题目链接: 传送门

青蛙的约会

Time Limit: 1000MS     Memory Limit: 65536K

Description

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

1 2 3 4 5

Sample Output

4

思路

设经过t步后两青蛙相遇,则必满足以下等式: (x+mt)-(y+nt)=k*L(k=0,1,2....) 整理后得: (n-m)t+kL=x-y 满足欧几里德方程。

ax + by = c 的整数解。

  • 1、先计算gcd(a,b),若c不能被gcd(a,b)整除,则方程无整数解;否则,在方程两边同时除以gcd(a,b),得到新的不定方程 a' * x + b' * y = c' ,此时gcd(a',b')=1;
  • 2、利用欧几里德算法求出方程 a' * x + b' * y = 1 的一组整数解x0,y0,则c' * x0,c' * y0是方程 a' * x + b' * y = c' 的一组整数解;
  • 3、根据数论中的相关定理,可得方程 a' * x + b' * y = c' 的所有整数解为: x = c' * x0 + b' * t y = c' * y0 - a' * t (t为整数).上面的解也就是 a * x + b * y = c 的全部整数解。
#include<iostream>
#include<algorithm>
#include<cstdio>

__int64 gcd(__int64 a,__int64 b)
{
    return b?gcd(b,a%b):a;
}

void extgcd(__int64 a,__int64 b,__int64 &x,__int64 &y)
{
    if (!b)
    {
        x = 1;
        y = 0;
    }
    else
    {
        extgcd(b,a%b,y,x);
        y -= x*(a/b);
    }
}

int main()
{
    //freopen("input.txt","r",stdin);
    //freopen("output.txt","w",stdout);
    __int64 x,y,m,n,L;
    while (~scanf("%I64d%I64d%I64d%I64d%I64d",&x,&y,&m,&n,&L))
    {
        __int64 a,b,c,g,k1,k2,t;
        a = n-m;
        b = L;
        c = x - y;
        g = gcd(a,b);
        if (c % g)
        {
            printf("Impossible\n");
        }
        else
        {
            a /= g;
            b /= g;
            c /= g;
            extgcd(a,b,k1,k2);
            t = -c*k1/b;
            k1 = c*k1+t*b; //注释
            if (k1 < 0)
            {
                k1 += b;
            }
            printf("%I64d\n",k1);
        }
    }
    return 0;
}

/*注 1:此时方程的所有解为:x=c*k1:+b*t,x的最小的可能值是0,令x=0可求出当x最小时的t的取值,但由于x=0是可能的最小取值,实际上可能x根本取不到0,
那么由计算机的取整除法可知:由 t=-c*k1/b算出的t,代回x=c*k1+b*t中,求出的x可能会小于0,此时令t=t+1,求出的x必大于0;如果代回后x仍是大于等于0的,
那么不需要再做修正。*/

POJ 1061青蛙的约会(拓展欧几里德算法)的更多相关文章

  1. poj 1061 青蛙的约会 拓展欧几里得模板

    // poj 1061 青蛙的约会 拓展欧几里得模板 // 注意进行exgcd时,保证a,b是正数,最后的答案如果是负数,要加上一个膜 #include <cstdio> #include ...

  2. POJ.1061 青蛙的约会 (拓展欧几里得)

    POJ.1061 青蛙的约会 (拓展欧几里得) 题意分析 我们设两只小青蛙每只都跳了X次,由于他们相遇,可以得出他们同余,则有: 代码总览 #include <iostream> #inc ...

  3. poj 1061 青蛙的约会+拓展欧几里得+题解

    青蛙的约会+拓展欧几里得+题解 纵有疾风起 题意 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出 ...

  4. POJ 1061 青蛙的约会 扩展欧几里德--解不定方程

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 81606   Accepted: 14116 Descripti ...

  5. poj 1061 青蛙的约会 扩展欧几里德

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K       Description 两 只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们 ...

  6. ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德

    POJ 1061 青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & %llu  Descr ...

  7. POJ 1061 青蛙的约会【扩展欧几里德】

    设跳的次数为t 根据题意可得以下公式:(x+mt)%L=(y+nt)%L 变形得 (x+mt)-(y+nt)=kL (n-m)t+kL=x-y 令a=(n-m),b=L,c=x-y 得 at+bk=c ...

  8. POJ 1061 青蛙的约会(拓展欧几里得求同余方程,解ax+by=c)

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 122871   Accepted: 26147 Descript ...

  9. poj 1061 青蛙的约会 (扩展欧几里得模板)

    青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Status ...

随机推荐

  1. Spire.Doc组件读取与写入Word

    之前写了一篇开源组件DocX读写word的文章,当时时间比较匆忙选了这个组件,使用过程中还是有些不便,不能提前定义好模版,插入Form表单域进行替换.最近无意中发现Spire.Doc组件功能很强大,目 ...

  2. Theano2.1.17-基础知识之剖析theano的函数

    来自:http://deeplearning.net/software/theano/tutorial/profiling.html Profiling Theano function note:该方 ...

  3. (转) RSA算法原理(一)

    最近用到了RSA加密算法,虽然有现成的,但是想看看它的原理,翻到此文,感觉写得很好,通俗易懂,转了.   作者: 阮一峰 日期: 2013年6月27日 如果你问我,哪一种算法最重要? 我可能会回答&q ...

  4. JS运动从入门到兴奋1

    hello,我是沐晴,一个充满了才华,却靠了照骗走江湖的前端妹子.在这个充满PS的年代,这你们都信,哈哈,废话不多说,今天要分享的是关注JS运动的知识.楼主一直认为,不管学习什么,核心思想才是王道,掌 ...

  5. 最佳实践 —— 详细谈谈如何减小APK体积

    转载请注明出处: http://www.cnblogs.com/soaringEveryday/p/5254520.html 随着Android移动开发的需求越来越复杂,我们不可避免的遇到发布出去的a ...

  6. winform程序自动升级

    可参考下面这个链接,描述挺详细的,下次用的时候试试,感谢牛逼的作者. http://www.fishlee.net/soft/simple_autoupdater/

  7. 理解JavaScript的作用域链

    上一篇文章中介绍了Execution Context中的三个重要部分:VO/AO,scope chain和this,并详细的介绍了VO/AO在JavaScript代码执行中的表现. 本文就看看Exec ...

  8. snr ber Eb/N0之间的区别与联系

    信噪比(S/N)是指传输信号的平均功率与加性噪声的平均功率之比,载噪比(C/N)指已经调制的信号的平均功率与加性噪声的平均功率之比,它们都以对数的方式来计算,单位为dB. 对同一个传输系统而言,载噪比 ...

  9. BroadcastReceive之ip拨号

    首先,新建一个类,继承于BroadcastReceive,然后去配置Manifest.xml <receiver android:name=".PhoneOnReceice" ...

  10. 东大OJ 2SAT 异或

    看了十年才懂懂了十年才会会了十年才会写写了十年才写完写完了十年才能改对 #include<stdio.h> #include<string.h> struct res{ int ...