上接:Caffe学习系列(21):caffe图形化操作工具digits的安装与运行

经过前面的操作,我们就把数据准备好了。

一、训练一个model

右击右边Models模块的” Images" 按钮 ,选择“classification"

在打开页面右下角可以看到,系统提供了一个caffe model,分别为LeNet, AlexNet, GoogLeNet, 如果使用这三个模型,则所有参数都已经设置好了,就不用再设置了。

在下面,系统为我们列举出了本机所带的显卡,我们可以选择其中一块进行运行。

在最下面,输入一个model name, 就可以点击create 按钮了。如果有些选项不对,会有错误提示,很人性化。

在训练过程页面,左上角显示了生成的配置文件名称 (放在job目录文件下,默认路径为:/usr/share/digits/digits/jobs/),运行过程中保存的caffemodel快照也保存在这个目录下面。

页面中间显示了训练和测试的数据信息,右面显示了训练所用的时间和gpu使用情况,下面就是一些实时化图表,可以看到训练阶段的loss, 测试阶段的loss和accuracy,相当方便,甚至还可以看到学习率的变化情况,吃惊吧!

模型训练好后,直接就可以在下面进行测试了。

二、测试新来的图片

将页面拖到最下面,选择Upload imager按钮,加载一幅测试图片。在 /home/username/mnist/test/ 下面有大量的测试图片,随便选一张就可以了。

也可以通过在Image URL方框里,输入一张网上的图片地址来进行测试。

加载好测试图片,在 Show visualizations and statistics 选择模式框上点上勾。

点击”Classify One" 按钮就可以开始测试了。

如果你不是对一张图片进行测试,而是一个测试集,则是在" Upload Image List"这个地方,选择测试图片的列表清单文件(如 val.txt)

系统会弹出一个新的页面,显示top-5的分类情况 ,同时digits还提供了测试数据与权值的可视化和统计信息。

最后一句话总结,nvidia digits, 谁用谁知道!

Caffe学习系列(22):caffe图形化操作工具digits运行实例的更多相关文章

  1. Caffe学习系列(21):caffe图形化操作工具digits的安装与运行

    经过前面一系列的学习,我们基本上学会了如何在linux下运行caffe程序,也学会了如何用python接口进行数据及参数的可视化. 如果还没有学会的,请自行细细阅读: caffe学习系列:http:/ ...

  2. Caffe 学习系列

    学习列表: Google protocol buffer在windows下的编译 caffe windows 学习第一步:编译和安装(vs2012+win 64) caffe windows学习:第一 ...

  3. Caffe学习系列(23):如何将别人训练好的model用到自己的数据上

    caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model.这个model将图片分为1000类,应该是目前为止最好的图片分类model了. 假设我现在有一些自己的图片想进行分 ...

  4. Caffe学习系列(3):视觉层(Vision Layers)及参数

    所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...

  5. 转 Caffe学习系列(3):视觉层(Vision Layers)及参数

    所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...

  6. Caffe学习系列——工具篇:神经网络模型结构可视化

    Caffe学习系列——工具篇:神经网络模型结构可视化 在Caffe中,目前有两种可视化prototxt格式网络结构的方法: 使用Netscope在线可视化 使用Caffe提供的draw_net.py ...

  7. Caffe学习系列(12):训练和测试自己的图片

    学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...

  8. 转 Caffe学习系列(12):训练和测试自己的图片

    学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...

  9. Caffe学习系列(12):训练和测试自己的图片--linux平台

    Caffe学习系列(12):训练和测试自己的图片   学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测 ...

随机推荐

  1. 9、数据库工程师要阅读的书籍 - IT软件人员书籍系列文章

    数据库设计是软件项目底层的工作,它关系到软件项目的基础内容设计问题.数据库工程师的工作,就是设计数据库,维护数据库,优化数据库,这个跟DBA数据库助手的工作类似.现在的数据库有好几种了,比如MS SQ ...

  2. JavaScript Patterns 6.5 Inheritance by Copying Properties

    Shallow copy pattern function extend(parent, child) { var i; child = child || {}; for (i in parent) ...

  3. MongoDB ServerStatus返回信息

    ServerStatus返回信息 ServerStatus返回mongodb中很多信息 http://docs.mongodb.org/manual/reference/command/serverS ...

  4. Java设计模式学习笔记(单例模式)

    最近一直在看<Head First设计模式>,这本书写的确实是很不错的,专注于怎么用最简单的方式最通俗的语言让人了解设计模式.据说GoF的设计模式那本书写的很好,是一本经典,但是就是难懂, ...

  5. PostgreSQL-安装9.2

    一.环境 VM虚拟机 NAME="Ubuntu" VERSION="12.04.4 LTS, Precise Pangolin" 二.过程  1.安装make ...

  6. ZooKeeper日志与快照文件简单分析

    有用过Zookeeper的都知道zoo.cfg配置文件中有dataDir配置项用于存储数据,不过可能有些人不太清楚这个目录具体存储的是那些数据,默认情况下这个目录是用于存储Log(事务日志)与Snap ...

  7. linux 添加用户、权限

    # useradd –d /usr/sam -m sam 此命令创建了一个用户sam,其中-d和-m选项用来为登录名sam产生一个主目录/usr/sam(/usr为默认的用户主目录所在的父目录). 假 ...

  8. Linux nm命令

    一.简介 显示关于对象文件.可执行文件以及对象文件库里的符号信息. 二.选项 http://www.cnblogs.com/wangkangluo1/archive/2012/07/02/257243 ...

  9. 【2016-10-11】【坚持学习】【Day2】【代理模式】

    今天学习了代理模式. 定义 官方: 代理模式:给某一个对象提供一个代理或占位符,并由代理对象来控制对原对象的访问. Proxy Pattern: Provide a surrogate or plac ...

  10. 【CSS】使用边框和背景

    1. 应用边框样式 先从控制边框样式的属性开始.简单边框有三个关键属性:border-width.border-style 和 border-color . <!DOCTYPE html> ...