【BZOJ-2460&3105】元素&新Nim游戏 动态维护线性基 + 贪心
3105: [cqoi2013]新Nim游戏
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 839 Solved: 490
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
5 5 6 6 5 5
Sample Output
HINT
k<=100
Source
2460: [BeiJing2011]元素
Time Limit: 20 Sec Memory Limit: 128 MB
Submit: 564 Solved: 304
[Submit][Status][Discuss]
Description
相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术。那时人们就认识到,一个法杖的法力取决于使用的矿石。一般地,矿石越多则法力越强,但物极必反:有时,人们为了获取更强的法力而
使用了很多矿石,却在炼制过程中发现魔法矿石全部消失了,从而无法炼制出法杖,这个现象被称为“魔法抵消” 。特别地,如果在炼制过程中使用超过一块同一种矿石,那么一定会发生“魔法抵消”。 后来,随着人们认知水平的提高,这个现象得到了很好的解释。经过了大量的实验后,著名法师 Dmitri 发现:如果给现在发现的每一种矿石进行合理的编号(编号为正整数,称为该矿石的元素序号),那么,一个矿石组合会产生“魔法抵消”当且仅当存在一个非空子集,那些矿石的元素序号按位异或起来为零。 (如果你不清楚什么是异或,请参见下一页的名词解释。 )例如,使用两个同样的矿石必将发生“魔法抵消”,因为这两种矿石的元素序号相同,异或起来为零。 并且人们有了测定魔力的有效途径,已经知道了:合成出来的法杖的魔力等于每一种矿石的法力之和。人们已经测定了现今发现的所有矿石的法力值,并且通过实验推算出每一种矿石的元素序号。 现在,给定你以上的矿石信息,请你来计算一下当时可以炼制出的法杖最多有多大的魔力。
Input
第一行包含一个正整数N,表示矿石的种类数。
接下来 N行,每行两个正整数Numberi 和 Magici,表示这种矿石的元素序号和魔力值。
Output
仅包一行,一个整数:最大的魔力值
Sample Input
1 10
2 20
3 30
Sample Output
HINT
由于有“魔法抵消”这一事实,每一种矿石最多使用一块。
如果使用全部三种矿石,由于三者的元素序号异或起来:1 xor 2 xor 3 = 0 ,
则会发生魔法抵消,得不到法杖。
可以发现,最佳方案是选择后两种矿石,法力为 20+30=50。
对于全部的数据:N ≤ 1000,Numberi ≤ 10^18,Magici ≤ 10^4。
Source
Solution
线性基,动态维护 + 贪心
贪心的进行排序,按照对答案的影响从大到小排序,然后动态维护线性基,判断异或和是否为0
貌似贪心什么的要拿拟阵来证明= =(那玩个卵)
Code
//BZOJ2460
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
long long read()
{
long long x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define maxn 1010
int N,ans;
struct YSNode
{
long long Num;int Mag;
bool operator < (const YSNode & A) const
{return Mag>A.Mag;}
}a[maxn];
long long base[maxn];
int main()
{
N=read();
for (int i=; i<=N; i++) a[i].Num=read(),a[i].Mag=read();
sort(a+,a+N+);
for (int i=; i<=N; i++)
{
for (int j=; j>=; j--)
if ((a[i].Num>>j)&)
{
if (!base[j]) {base[j]=i; break;}
else a[i].Num^=a[base[j]].Num;
}
if (a[i].Num) ans+=a[i].Mag;
}
printf("%d\n",ans);
return ;
}
【BZOJ-2460&3105】元素&新Nim游戏 动态维护线性基 + 贪心的更多相关文章
- 【bzoj3105】【cqoi2013】【新Nim游戏】【线性基+贪心】
Description 传统的Nim游戏是这种:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量能够不同).两个游戏者轮流操作,每次能够选一个火柴堆拿走若干根火柴.能够仅仅拿一根,也能够拿走整堆火柴 ...
- 【BZOJ】3105: [cqoi2013]新Nim游戏
http://www.lydsy.com/JudgeOnline/problem.php?id=3105 题意:k堆火柴,先手和后手在第一次拿的时候都能拿若干整堆火柴(但不能拿完),之后和nim游戏规 ...
- bzoj 3105: [cqoi2013]新Nim游戏 异或高消 && 拟阵
3105: [cqoi2013]新Nim游戏 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 535 Solved: 317[Submit][Stat ...
- 【bzoj4184】shallot 线段树+高斯消元动态维护线性基
题目描述 小苗去市场上买了一捆小葱苗,她突然一时兴起,于是她在每颗小葱苗上写上一个数字,然后把小葱叫过来玩游戏. 每个时刻她会给小葱一颗小葱苗或者是从小葱手里拿走一颗小葱苗,并且 让小葱从自己手中的小 ...
- 【bzoj4568】[Scoi2016]幸运数字 树上倍增+高斯消元动态维护线性基
题目描述 A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念碑的形式矗立在这座城市的正中心,作为城市的象征.一些旅行者希望游 ...
- bzoj 3105: [cqoi2013]新Nim游戏【线性基+贪心】
nim游戏的先手必胜条件是所有堆的火柴个数异或和为0,也就是找一个剩下火柴堆数没有异或和为0的子集的方案,且这个方案保证剩下的火柴个数总和最大 然后我就不会了,其实我到现在也不知道拟阵是个什么玩意-- ...
- BZOJ 3105: [cqoi2013]新Nim游戏(线性基)
解题思路 \(nim\)游戏先手必胜的条件是异或和不为\(0\),也就是说第一个人拿走了若干堆后不管第二个人怎么拿都不能将剩余堆的异或和变成\(0\).考虑线性基,其实就是每个数对线性基都有贡献,任何 ...
- BZOJ 3105 [CQOI2013]新Nim游戏 ——线性基
[题目分析] 神奇的题目,两人都可以第一次取走足够多堆的石子. nim游戏的规则是,如果异或和为0,那么就先手必输,否则先手有必胜策略. 所以只需要剩下一群异或和为0就可以了. 先排序,线性基扫一遍即 ...
- 3105: [cqoi2013]新Nim游戏
貌似一道经典题 在第一个回合中,第一个游戏者可以直接拿走若干个整堆的火柴.可以一堆都不拿,但不可以全部拿走.第二回合也一样,第二个游戏者也有这样一次机会.从第三个回合(又轮到第一个游戏者)开始,规则和 ...
随机推荐
- ES6 数组解构赋值
.数组解构 let [a, b, c,d] = ["aa", "bb", 77,88]; alert(a) //弹出aa 可以用babel 解析看ES5的转换结 ...
- Openjudge 1.12-04
04:最匹配的矩阵 查看 总时间限制: 1000ms 内存限制: 65536kB 描述 给定一个m*n的矩阵A和r*s的矩阵B,其中0 < r ≤ m, 0 < s ≤ n,A.B所有 ...
- 通用权限管理系统组件3.9 的 Oracle 数据库创建脚本参考
---------------------------------------------------- -- Export file for user USERCENTER -- -- Create ...
- noi1696 逆波兰表达式
1696:逆波兰表达式 http://noi.openjudge.cn/ch0303/1696/ 总时间限制: 1000ms 内存限制: 65536kB 描述 逆波兰表达式是一种把运算符前置的算术 ...
- codevs1910 递归函数
难度等级:黄金 codevs1910 递归函数 题目描述 Description 对于一个递归函数w(a, b, c). 如果a <= 0 or b <= 0 or c <= 0就返 ...
- Python快速教程目录(转)
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 怎么能快速地掌握Python?这是和朋友闲聊时谈起的问题. Python包含的内容 ...
- WPF Adorner+附加属性 实现控件友好提示
标题太空泛,直接上图 无论是在验证啊,还是提示方面等一些右上角的角标之类的效果,我们会怎么做? 这里介绍一种稍微简单一些的方法,利用附加属性和Adorner来完成. 例如WPF自带的控件上要加这样的效 ...
- DirectX11 SDK 例程报错解决方法
下载好DirectX11例程后,VS2015运行不起来,好几个报错 在这里记录一下,虽然挺简单的,但是我想对于像我这样的新手小伙伴们来说还是挺有用的 第一个错误: FXC : error X3501: ...
- Javascript中的循环变量声明,到底应该放在哪儿?
相信很多Javascript开发者都在声明循环变量时犹豫过var i到底应该放在哪里:放在不同的位置会对程序的运行产生怎样的影响?哪一种方式符合Javascript的语言规范?哪一种方式和ecma标准 ...
- 多线程处理中Future的妙用
java 中Future是一个未来对象,里面保存这线程处理结果,它像一个提货凭证,拿着它你可以随时去提取结果.在两种情况下,离开Future几乎很难办.一种情况是拆分订单,比如你的应用收到一个批量订单 ...