NYOJ题目96 n-1位数
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAscAAAJgCAIAAADpjVkvAAAgAElEQVR4nO3du04jS/gv7H0T5FwIsa9jC+SEjGDHkziBCGl/wZZIkJz+EwJGkzpfwUgkQ+ZswrkEf0GfqqqrD4bCGPM8Gmkt7Haf3fXrt8vd/2sHAFDC//rsGQAAToRUAQCUIVUAAGVIFQBAGVIFAFCGVAEAlCFVAABlSBUAQBlSBQBQhlQBAJQhVQAAZUgVAEAZUgUw5fnq5vzs9v5P8NKfX4uzm/Ozx+eRj9XDxB/c/b2/uDk/uzm/+v0xMwt8IqkCvr3nq5vzs+pfNiX8vj67OT+7Wdz97X/k+qk//N/7i5vF3d8oVTw9nl/8eg3Glvsg8NVJFfB9NWWDs9FU8fSYe6sOB01W6A9/e//Upoogl7Tv/tkBJ0eqgO/r7/1FdSWijReZVFGXJa5+v97dxhGk969JGK93t+cXj89tqrj7tagntMuORN0CToVUAYykivoqxs31Uz4Q9FNFcD0l+Xd7/6dfHZEq4JRIFfC1RVcigoZ/tB9lajBVtCOc3/CPpYqnqI9nPXLdNuF0SBXwtXWp4jmtJcwPFkOpohl5myr+/FrE3TZ3TThIYkeQLbouFE1GqV+phknGBnxlUgV8bW2quF28/crCQKqoe1Z2o6qzQtRDs/1skx6aiya9yx9JRqk/6PIHnBCpAr62rqluTvq7vguzywDZVBH1gajb/swvOJoZqC9ktPPz+JyPF+2MVUP6MQicEqkCvragFW9fa2oMTaroksdADSObKqJPNR/p3buimVY7zte72+AXpM0Inx7PL37dX91cXz3W1Y78D1aBL02qgK8td9+IMqli93x1s7j7ldy0KrkI0nSVaD+Y/5VH8JG6RLFwh004QVIFfG1zUsWkfKp4vfv13LsVZtzjsn/77clUEf1IRKcKOC1SBXxt70oVg78C7cbWu8F201siuCd3/gcgST+P/kWTzH05ga9NqoCv7eCpokoJ0e0xBn85cn71u5lEN8xbb6oBHD+pAr62w6eK1tjTR+MbcXY/9EinqF8FnBSpAhjTporhDhPpT0bjcsVAaunu2SVYwOmQKoAx+6aKX9f5kPH43OtOMfo4deArkiqAMSNXQPKyN/Du3oorE89XIgWcEqkCAChDqgAAypAqAIAypAoAoAypAgAoQ6oAAMqQKgCAMqQKAKAMqQIAKEOq4OvYrBbL9bb9c7teNn9vVouc5XpbDdZabaI/21fbEa42u+16GU4mnHw94Dfw9oUdWn3p6IcGmr+9djYZHB2pgmMSp4O0ocg0ReOtU5sqVpv2hfbPYBTV3807aRPVDPCGJurPr0X++ZztMzXCR4FnXxx5/SN9bKrobYTce1Pba/chm6wSbLjrp133YNjoma7ZF4c2+sDAoc0qDEzVl2G53vYy83Rog88jVXBMgpAwFSEmG4w0VdQfGDz3zb3RHNTf2kQ9PQbPIv99XT9t6/d195iM9v+zL478/wfbY2EHCkVpK5hdvwPmbK+hUb5zk9XPMeke3b7b7QbW/MDmmN7oIyuymd3NqlvOOG1sVnIFx0yq4JikqWI9fGUjKjHkGp04VbRns0Pnvt2k9z3x3a6X847zz1c351e/d0+P4Xlq/cCt7Iu73eDryVpbrNbtaqiuCCQNcNT2z2hp90sV4dL3r1PtUWDazd5euw/aZH9+LeYGiFkhr97oe6WK7XqZ5oj4oo/rOhwvqYJj8pZaRdKi9F7frpdVmxtf5+h9YLutR/JBqeLpsToDbpqZ8PXH69yLz7v8wOl1kLZU3sxM9Ecz78EZ/mo6Ar05VaTrt5cqqgGGe8LM3V67D9lkr3e3mWsTb04VzUbfJ1X0ihFRqgh6E8Exkio4Jr1+FVGbMpgqZtQqJirqw+X55Xr9zov01ZPB27bqY1JFVJPoNUH7N0VvTRVRqqlfSLvYZkYcfOxdV6zevcmer27OL26DjhHV2o57RWS7SsQ1pGSjjw/crcjFctmvRKQJTKGCYyZVcEwytYqgGXpHraJrYuo/o/YmbnyKd/2r/Pm1OLtZ3P39jFTRNcFzs8XbUkU9vbAUEK3NbI0g7EKwe8P2Sieye88me76K+lEmf+52uzofpLEg+2K30WcNXNWclss0OLgCwlciVXBM8ldAgjbinakiqH6EqWXwpHgRNmjv/pliVV2//4xU0f41N1rsnyqqscf9OOIffW5Wi+VyOdxdJjkbn9heuw/ZZOkK//NrkfbczF8lGbh0ss/AzaZLs1fy25De33BMpAqOyRv7VeTapChVBG90tY+6sByeZwe/aOxeKZYq6hPfj+mtOSNVDL/W94bfgPRG2vSQqN6oxji1Wedvr92HbLK0ve86RgwPM/ziLl/tmEgVuyShJSlCsYKjJlVwTHr9KtJ3p2sVrV6ton25vWy/SlvgbBMVTH7Prn/PV0EHve7HBaV/WTqnX8UqXHEz2qS3/wYk0S8lzUgVc7bX7kM2WfBb0F19p5Cr3693t91VjOaiRvbF3cBGHxo4XRFJrafNY8kvQoQKjpdUwTF5S61ialyZViqILN0xOm6i6iJ9pnnrGWminh7DGx+FgeD5KnNjq+yLI693SzpVqwjj2qyuFUeVKrLba/cxm2y3i3pWthWj/nYc2rh7DZysiP6SL9fbpLemX4Bw1KQKjl5wUI0vNmcbjN7Q/dPX3DWBuDtcNETm5g+n792potsOaT/K8JJTZoi9t9fOJoPjIVUAfe/uRAJ8S1IF0CdVAG8hVQAAZUgVAEAZUgUAUIZUAQCUIVUAAGVIFQBAGVIFAFCGVAHfRn2fyhn3ovCwCeBNpAo4UeHjI5InyfefMJY8ayLrbSnj+Sr3JC3gNEkVcOrq2kQ+OHQ5ow4NyYM33nGTzeahaFIFfB9SBZyozap9vFrz4Ms6H2QeHt88aHxE7lmZEw//3FUPE5cq4NuQKuBU1eGhDgz50BA8eP4ttQqpAohIFXC6ukCx2gT5YKBW0aaKIv0palIFfCtSBZywsJYwM1UUJlXAtyJVwCkLfu2R7a1Zp4vterlYbYZ/CPL2xCFVwLciVcAJq3JCFR3GahXRj06j9zariY4TE6QK+FakCjhZVUKo6hCjqSKOEtv1crFcb2d0xdRbE4hJFXCimjQR/bY0e3EjqU9s18u5lz5GU0V7v4rq3/VTwYUDjpNUAaep1/9ysENm9UYXOpIflpb5LQjwLUgVAEAZUgUAUIZUAQCUIVUAAGVIFQBAGVIFAFCGVAEAlCFVAABlSBUAQBlSBQBQhlQBAJQhVQAAZUgVAEAZUgUAUIZUAQCUIVUAAGVIFQBAGVIFAFCGVAEAlCFVAABlSBUAQBlSBQBQhlQBAJQhVQAAZUymiqfH87Ob86vfzd+/r89uzs8en9P/3+12u9e722DI/hh+XwcDAwCnpWCqqIY8u7l+yo/h+erm/Ozm/Oz2/k/JJQAAjsP8VPHn1+KsigX5f9dPu9e72/O4ehGNoSpmSBUAcJrGUkVVimj+Xfx67V7MXwHZ7f7eX9xcP/19vXscyR/NqACAU1K0X0VOE036/S0AgJOyd6oYEhQ2goGbayJVvwrXPgDghO2RKv7eX0xd1MgVNhYXt8GQfgMCAKdq71RR1RuCax9VL85cqni+ujk/e3xOfgOiUwUAnKaZqeLs5vzi8XqvVNH+f6/asbj7+8FLBQAc3kiqCH9Kum+tov7s4/MujhrNONN7WgAAX96H9Kt4rHpu1jWJ+LLI692tWgUAnKKP6lfx+7rtPzH3VyQAwJf2kb01e2MAAE5YyVQRXCKRIQDg25lKFdVtrBZ3fyf7VdxftZljdEi9NQHgNI2lijYcVLeuCmsVgbpW8Xh/dSsrAMA3NnkFBABgFqkCAChDqgAAypAqAIAypAoAoAypAgAoQ6oAAMqQKgCAMqQKAKAMqQIAKEOqAADKkCoAgDKkCgCgDKkCAChDqgAAypAqAIAypAoAoAypAgAoQ6oAAMqQKgCAMqQKAKAMqQIAKEOqAADKGE8V2/VyMWq53rYDrjbvnpvNanhSBUZfLc+sEW1W7bL1xzDqHfNZTTS/ElabWVMfmIehxfnoJTqY/g6YXeTZO3QzcDyK/iu78Z22PwfpbPVmc7teVi9sVtUSpf99u2Rae39p3/v1rNZ+6d1ps8qu6HY9tpPOfwNm7jkD78V/f8i2y+yz0biGN2PzzvDCZ5dprzmbv+oyHy57hCm6xT/wa3j63lOr6LbFZpXuGb0D0KydbXCnLLIpt+vlYrmclyvmfj0mZyzXagx8lepBM6Mcmcq8oLTHt73QEg0t5vyB9xlD9kAxuVbiw1D/zeRQvu4d3pfr7ci6DUafTTMDG7uZ981qsdp072/Xyzd9BeYm0Rn7x/u+nhNt2wzxoiSbPxl1f17z35RZe84em6/otsvNYftns4QzUsV2G6+heOX0ktHMY+3sL93IeVI9pu3eu0V/+xbd4t3LJTfld1EiVfS+c9UJdy7DT49x0Hu3ZZt8+hFoZNlmjHVoXO3CxF/gdvhkPsKjxfxUMWthSqWK2Us0tJjzB95jDOnu15ydTbeZE4taj6j+aHtcTj81r1bRjKjeEtXW7n80E10W2aV8S/v8qbWKeXvq6DxtVlHDGI4vHftmtVhtxgJVsxHSZRjYc2ZuvvyKed+2CyoO3aR3/VSxRyHz/aliry/dm4shWbmj0K70Fs+OqNDX8PRNpYoZ1cDgANztjrlUEeXl8DAQHrA/plaxWSVH+Hg6M7+QmXmbmrGxc4SBFbZHqhg4Ur99ccos0dBizh94nzFEkbU9tiRVj9yyDh8/o3VQtWVhixafr8ypVQye7m7W601/4ObQGbWaQd3jXceyoea91Ndzs4rCUdsq91uB/mC7sVreyOwmf84si+yx5+yz+Qpvu7mpYviTPbNSxej+8L//z/+e/6Xb4xQtu0sMLFqakMtu8XaOPuhreMoKpIpGusX6tYpg19yGl1jbgT+kVrFdLxfB+KvxTFw4mF2t3asNzpxQda1luDbmLX494LwvU7ErINNLtBpYzPkD7zWG/0n3u2WmO8Tg+UeurZg4b9v7HD/6ZLo1N6s6cIcBc7FYrtfd5t2uV8vwGL3P1OcvdaGv5ybs51DvLflLFL3BJlbVLv18vl2pPpp+46MPtgeBeXvOyDwlm6/stmunOjdVxOsxOPLtgg+Mb8hu+cb2h//v/+6x6ubUdJqv98guka6UNLIX3uIfsCm/ixmpYkyTFXovr7NXQNrNu10vV5vm9G+vo/TcOl97dpV8r9LD3+DJaqa5nlXxXPTapalUsV1X/T26L+2MWkU94k3bwXNsDeYX56OW6JNTRXPIzZ5hxMs+nrSGjmv7lpy7Ul64wQYO/lHS7Equ3bdl7onfwBKNfbbA13OXbqRqsddjh/pusMysDXxJkwYzGGHzbarf7M193FbO3nPmbL6P2XbNEmzCiy/ByNIlTE6dFk2qWyyW602uA8NQYXBsf9jrS7dXrWJ6l0jf/Igt/qFfw5NXtlYRnW9lUkVQS6129ebLuPqf+RcFZ+u3tf1X8rvuZrVYrlZzKlwlahWb1WoTjGhOqmjH1K7n6GzizYtTZIkOnypyu0gwn9lF6g7S+fVSJ7HN2I45dBwbWWfdBttsgtOg7rC1GxhjV+9749FsOEH2znTf9fUcSBXpXE80IaO1ikymCC6exc1+sirD9ZfGwqE9Z7/NV3rbBakiGv1Qqkg+uY52rGYdJH/mj+PD+0OvA8Pol+49qWLd7bX5ytTuI7Z4b1WEE37f1/A7eE+q6A/abad8qoi++c3LQ5P4gA03dU4fDzVnBkqkimREk6lis4pObYN5zNYk9lmcIkt0DLWKZla742B/KZrTsMxaqZqtZT5wpMeaiQpAMMaZbXIiPFvuVWxn2YxcKwtXTpGv5ztTxeSlj2yk2MWbJW1J8mc72TPX6J32xVmbb/UR266Z/7BCNp0qorWYrrG5qWJkf9hj1UV5KKtfp2vX2ZxaRW8hCmzxD/kafhvvTRXh0XkR9H0ZSBXV6+tVt4VW63AXSI4MmaPuu8xJFUlTP7Hz7NUG99dKtPMHdcfMIav7ng8F8dwU91ycMks0tJjzB95nDMNHisFFCnJZGgk23Q/Jkr02v912Y0WAsU4vgxtj+JgYxsnZpkJltHJKfD2HzjiT7ZJvQqbKPkORYjeyp8c1/exhKV0P2ZWTvjORbApsu2TM+f0pXmVhgOxvrvZbNC9VDO8P+6y6IA9lZj+YeqlUUWSLf9ymPH0FUkUT8bpTjd4ZTrAx49PpqL6RbK9PqFX0j1lTe9B+bXB65IuPBtO1iv4qGV1J+y9OoSUaWsz5A+8xhskjRdJSxcEsOdSFfyb/335mquUbmG4yxl6r3ByDN5ttcFbXay9GJj26e89KFSW+nrm2YdNvIfZoQqKZGythDMxceK4zWGSat+eMb76P2nbtwlXjiVdUWMRYpMsXj7NegfNTxeD+sMeqmygLfkSqKLDFZ2/K6U37/cxIFWPrq9oIcVu1XS+jy2HxSVtysh18tNrlV+1ufOBUEX9/kmUc+thYA5Mcd+Ivam+MU435gNFj+96Lsyu4REPftvkDzxxDWljtzX2wjvo5K1necH0OXdmYmyr62yZplgZ373oJuy9DtzVHTtbH52ukojIYud709cy2Df0mYrhWMTSDuSWIyihDJbSh9bPPnlMPPy9Uld12w9tk4qND74zsCrnVmpv2/FXXrahCV0DyR6GP2OIzNmUzhQ9orL6wqVQxvCu02yW7QkcKT1nRDjUyzfclwqFUMXoS1A3Rb0ffPUfhBFab8e/7wFcsu/L3W5wPWaJDyZ9/RPtQ1yrljzz5PSxzcWR0FfV2297xaVrQbEej7b2SP+sb2XTzahXDH37v13OqTvg+ydg37U+jBi2HOgcM7DlzFd52w9XF7Jl096HJDTJkVmjeZ9UFNb7xWsV7fMQWn7Upm/PnL3bU/FCTqQL4Ct5Y7TqYWRc5jm7Uh3Hs2w72IFUABzFx8e2NBq/1AZ9BqgAAypAqAIAypAoAoAypAgAoQ6oAAMqQKgCAMqQKAKAMqQIAKEOqAADKkCoAgDKkCgCgDKkCAChDqgAAypAqAIAypAoAoAypAgAoQ6oAAMqQKgCAMqQKAKAMqQIAKEOqAADKkCoAgDKmUsXz1c352e39n+Tl39dnN+dnN+dXv/Mf+/NrkfkUAHDCJlLF3/uLm/Ozx+f41de72/MqVfTe2u2qSDH8LgBwmsZSRVOQaP4t7v7udrvd0+P52c35xa/nKltkyxVNsKg/AgCcvvFaxdNjmAxe//xt4kJ1daOqZOSDRVPPcB0EAL6JOani4vb87Ob66ff9xe15XL3o/l38ek0/PJY5AICTM5oqXu9uz89ur6+qVLF7vbvNR4Snx2qAxPOV3hUA8H2Mpornq5vzs8f7uzpV1D0qmn/Xd78WZ7f3T78W+YJE1y1D7woA+AYme2s2vTLbVNH9z3iqiCKIcgUAnLw9fgNye383P1XUnSqun9r/+dDFAAA+3Yx7a76+4QpIPeTj8677JWqvOycAcEr2TxUzahV1kaOtT1TdNvWuAICT9gGpov7pR1iciO5yAQCcpP37VUxcAQmvfQTqm2K5DgIAJ+s9tYrqAsefIFU0HS9yfTPdFAsATlvBVDEWKSpTTzoFAL6wN6SKq8fmAR9N+eHs9v5P2kMzr3nqmB+aAsDJmZEqAABmkCoAgDKkCgCgDKkCAChDqgAAypAqAIAypAoAoAypAgAoQ6oAAMqQKgCAMqQKAKAMqQIAKGMyVWzXy8VyvQ1f2qzSV/a1XS8Xq81ut1kt+labdqBuMtEfhzEyye16mZnxQP3B7XpZLU26oM0ytmuiHTI/F80qb+dps6rGkf43vwTZ9dzNZjAf89bIrKkD8O1MpIp+87na9JqofRuUzWrmZ4JEM9LEV/MTjrB6Zc8UMtTyFlnWKIhVbXD1UteaD2S1ZsHbAdtPrzZdY54PJb0UkH83GSC3IsI3504dgG9nNFXUrXrU3m3Xy9UmU8CYabte7tU0Nw3WSH2kbgW7kdYvvLe2Uag8slktlut1GCHyqWIgbaUVm2yLn76+XG/CV1ar8VpFs5KrzbpOVnU7i/OnftiiEgDHYixVRCejdVOxWTVtxluq3u1n9m6xx1PFcr1ehY3zarV6Q+M2Xa3Yv/xRz9RmTqrY7bbb7fhchNdTohjVzFn+stForSK8TLNcb3urOr04MnfqAHw7U/0qplraN1W+q5Py4c4JdWs7qW0yez0PNm9JFYmBJnLWnAVLsVxvJ1NFM87M9LJt+nK97uox2/VqucxmvWyqSEcYLM9wJ4ywnDJ36gB8O/v9BiRuaOMWcWYGyHX/3O12Uy1Sv1bRvhKdYtdzuH+qmNetYiBGjfR1DDPPeK1iIMWkXR7aukJ37WG1aUpI8Wqq325TwPBGCacyWKvYc+oAfDsHrlWMdHkYSxWZJNLv5rhdLxfL+rz53bWK+rLK2Djiyn/U3g4M20WekVSRpLTVqtdUZzJMN+b2SlWYGsZqFbs0DUxcAZkzdQC+p4lUkTQU77xu3p7i7pkq6pPkKFtkfjwR9AR9X6qI+ifmuzLEjWucDdJVVv1eortKM6dW0f2R/FRjrAK0XPbyQHdVKFev6HfCrGYsP+CeUwfg2xlPFXOubux9IX3fVBH9NCLpqVC/n94e4h2polrk6GegmaUcO38fCD/pbzyGUsVmVd+/Irg40aam5WoVTCn9vWqmqNGsqybYBO8OrfCRWkW0nFNTB+Dbmd2vYrteLpar1TJ7MryXvVLFUGsVtG+5wvtoI5f9BWfwqXQGt+tlPLbeFDNdKrvySRB0+r9NSVLFsplSUqFog9RqE3Zk7f2aNl6u6MrEeKoI+osOp4rtZubUs3MDwMmbkSqCs/fg5PfNpYr5qaL+wUEuG4S3vdg3VeS7VgZRo/sZSTD9pjVdbTLz3x9l15+xrjwM9FZNYkdvcu01ibaXZ1s9WTXDdx9M8s92vazuXBF8bODCxux+FTOmvu2mqHwB8K1M3K9iETc4Re5HEI9kIKBsVvnLDu+48hKMevSz7U8bZo2qll8tm9Uid8uwuitovCBBJ4j+GMNFH6+j1KmluQvWah38unTyCsjYFa96jmdNfa1WAfAt7ffL0lPgngoA8DG+X6oAAD6GVAEAlCFVAABlSBUAQBlSBQBQhlQBAJQhVQAAZUgVAEAZk6kiczvN5DkaUw9LH7sZZv7u2fvYjtyQ+m23E5/9sfmT3n8x04ecvd/gkrXPZEuXo/dI1u7pbf1RBA8Q2Qa382zuCR79N/PZzOS7m3q66zfAF/GWVDHRSA4+vCs/9pEnlWZu4t2/63TJO2VOP6M1fkrnzEnvO5fN7coLPgi0eVZ5dj6654xEi5d5XPvAoz3Cu40H+aF5Vmp3T/LM1HsZJP8uAF/A/FQxWJKYKGWkY5totheL6MS591ir+MFcxSPFvCZsr0mP1nKyz0ULnt5RZiHbTTK0bZonk3QRIp8qBsYQtf3ZbVw/ai1e9E34SvW8sjmrCIBjNZYqomageVZpfOlj4OGjo+1geMoatle9p44t1+tV2JpFzxFvZ6XQ2Ww91yOxJ3wy+fxJj9Ub4hWYXPToRl698Z6nqSVZLJqfbptu5qSK3W673Y4npTAWRqkweCBr8mBVtQqAk7DvFZBteBI9fO1iuRw77+9yR1RbX6zW2+R53PGl+kwLXY1qOAvs2yR1bV/SlA51Lxmd9MCb3RWBZmL1NY+xrgW5p7hOCuov8UqPF63NjGOpIvsw1W4UvYtV7aNLl+vtbrteLds1GOWHbKp4f38bAD7B3FQx/ozsXkPfNoPDyWO12Y31A6yb97ZZa8aYRJyhaskbm6TwhHq7Df5K6zKzJt0+CD2Ym+DPoXGkIwyrOYMbob9FNvGDy+MSUpxRwgg3XqsYqB2Ei91NqHq1fbL8ZpV7Jnv9dvBo+KkdDIBjNSdVxOFgsuthvx0MKt+zGsX6hxVtB8BlfZobpYpeP4toDvZOFXN/ydLlpZmTHk8V4/M5cI1p5uLE4+6/kqaaNMGNpIpkS65WvRnNLFw35rBCswiKKWoVAF/bWKoID/pjjW6/yhC/NJRD2qZpsP9g0l8xSBXtaXDRWkXYisct+ibu4bHHpDNRaiBVjIaud5+vT3WiXW2ii05zahVR14807mVmvvkhSlr16S5y5eoV0gXAl7FXv4pMf8pMUzfnd5TN9f62Ocv9kqRri7ruhPkWqT8Hb2qKomXdbsNz+d4o90oV2bmpRx8t6EB2KNFncWSzDP/GYyhVbFb1daveFaLterlcrYJFjnaTzJZuRrJZtcEmnmupAuDL2CNVdKfS9a0UBg73E6kiutzftVfJLyCymaVQqhicwRlXQcIa/dtSRViRqHsdjPdZGH1nvuHNEszCZrWIf2qTDrBdL7ueuEmFou3yudqE/VR7Pw6OZyO6LjKSKrIfBuCo7PsbkKhVzLd0w81X/2cM+SY37FeRfv79qeJN1+zfXqsYn5uwHvJJV0CCHrPxtYro16hh296f4S5n1ktbZ4DqJhTtJbS2p0w88urOFcHH+kFu2w2g7ybA0Zpzv4r4Ng697vv5X1zOm/w7e+X1Lsn0z4/79iiqB2NMl3KPSY+XQHLdFMaX823GKjTVL1V6VYKgn0NSTsn+yjRMRf03Mj+hae6C1d30S60C4EubrFWcHFfqAeBjfL9UAQB8DKkCAChDqgAAypAqAIAypAoAoAypAgAoQ6oAAMqQKgCAMqQKAKAMqQIAKEOqAADKkCoAgDKkCgCgDKkCAChDqgAAypAqAIAypAoAoAypAgAoQ6oAAMqQKgCAMqQKAKAMqQIAKEOqAADKmEoVz1c352e393+Sl39fn92cn92cX/0e+ezr3e352c35xa/Xd84kAPAFTKSKv/cXN+dnj8/xq3VcOMu8lRlMqgCAb2EsVTQFiebf4u7vbrfbPT1WWeG5Cg1BuSkZJY8AABoCSURBVOL5Khisnyr+/FpMBREA4Msar1U8PUYp4c/fJhlU10SqSkYXLKQKAPjG5qSKi9vzs5vrp9/3F7fncfWi+3fx61WqAIBvbTRVvN7dnp/dXl9VqWL3eneb75759FgNIFUAwDc2miqer27Ozx7v7+pUUfeoaP5d3/1anN3eP/1aNBdBqlQx9U+qAICTNNlbs+mV2aaK7n96qSLhNyAA8J3s8RuQ2/s7qQIAGDLj3pqvM6+A1O92Fzj6qaK+RDJ67ywA4GvaP1UM1iqkCgD41qQKAKCM/ftVuAICAOS8p1bxtNvtmrtQSBUA8N2VTxUz/kkVAHCC3pAqrh7rCyJ/mueAZB6VnqdWAQCna0aqAACYQaoAAMqQKgCAMqQKAKAMqQIAKEOqAADKkCoAgDKkCgCgDKkCAChDqgAAypAqAIAypAoAoIzJVLFdL5frbfzaZrVYLFabwc9sVoveZ/azXS8Xq009pdTIlMfHOOuTsyYdrZXcKuqmGUiHGltPzWy8YyZzI3n/psnNSzDK7XrZn0I7yGZVzU/63wmDO9xm1V+r82Z5ZLq9mcpu4GpNhpt4uV6vspthzGb1xh06NbgX9ofL7DO9fTResHa8mRWe3QfzYx2d9uDcT27kGXtgN6r4rXd+Hwb23/GxbtfL0QWauTi9nTjeEN0qn3GkerfMlo3mLZrZz2lTOJipVNE//lavJK/H2zz+Kxy02vHDEVav9L7qZY600UzPOu7NnnTwZZ/3Xc18Lca/KcOzMncms6HifSu2P8v9V7IBrpryZrVYbbqZ2K6X07MzHAHG27NgiyYvpp/LHuLaSWa3UrPNg/8uVutmToNZbve8wQUdjzizJZt2MNH22qz8X81chXO3XS8Xy9VquNHOztUijiqDm3JO8sgu0cw9MDvkwVNFfdwYOWZMLk66+1bfq+V6Ha3DsA2feaSa3ldHPxp8qv2zWZh0NyrYprxzzilvLFUke299jMkenvZLFf1vSBSnPyRSzDh27Dvppk0cPoaEB53Nqv7iDB0fZ5zzNSfHM2YynVLTQuQPzDO0s9dLgEOLFc9zarWZrOU0Exg8VWtWRDtM/3+6GVxtqj12s1rE7dzs1d/OZDWiroFoVnC3iqu/wnQyEgVLnIel4xg8R92jVlFtorC17y/W+CwlG3WfWsVAg91vGOfsgeEMtepi39tW/bzdJRMPxtPqHovTjiwoXKY7fzfdiSPV7H11QBBC6y9IPlV8QJvyzjmnvIlaRfTV7n2RlqvVMrcfj6aK5Xq9Cv9erYICZzu9crW6ej8b+Z7Gxfn9Jz3xXW2PxLlT4sG1NjG6yZmMBgha1swQm9WiOs/OHgnTsfaaidkrKy1UBQs8ehFp6NJHUA2oPhwM3O24SaqodtntrKUdXpAuWiTBODppGj+/ipfy7Xt7v30L5643/r1qFcGVqkW684wdvnsnC92npmoVw4uVbarn74G9E/h3pYp2JufWKnIz2t/ue3yhuhP8Lj9HLfq8+cq+tXf9bG6q2H1Qm/L2Oae88VQRFKyHaufVNp1K7vEeEOxq9WczR5SxwP6GA0FcYo26HkRjmzHpWTXagXO+tLEfThVDVcz5MxlPaJkerqJUkTl5z4nfrWYgiCbxDpKeQyzajgfVgWe1bGdxaO+aOkaErV24H6UHsbBW0c15sitl1md0DaDZQM3O3pUrgg8HU/1/ySr5yGpFkqIK1SrWTbSoLnwk62Y9tKtEO9SsqfanP89+e2DmyzYQf+aaGX3mHh7nLM56aE2uVtHBtRvfnDWeTm3fc/75qaJ0m/LeOae80VQRb/tgK4etXeYLOZkrN6ug4UtTxVC7NrQPzhKeF2/Db140r2+bdPY8KxnpMmzlstOu/tpEF0H7p+OzZ7Jfq0gHCQumccwaPsiGbzbLlQ1r0Wij/+vqRqtNddI/0qiOtLbb8LpW9Ec8m/HBqW4d02QUx4funWyqqN+c3Bn3ON699wyr27DZ+PrmWkV2q042wUPDhK9PFPgmNVtm3h7YNVRJqa89Ei3e1BbNqFX0t3p/Y3dnCTMXJzue6gCy3QyXkYaPVKVSRVov6aWK4m2KVHF8xlJFlHSX63XXBLT7RRcMert39qw73MmWy66CHH0HF/lzhzemijmHqMVisVgul2+adKYVznzd429N18bGqSKuyUaNcfDarJlMT1P6+aQdPpcqgl8zDCW+zSo+M0qWuncEy7Sc3e4z0MLMacO6RBEsc5Ko0lrF8IjybVeSKqJGvBt4Fe5qy/X/HCxV9EPFcKroTTj/TpSpVkPfobmNV/t69I3r1T+61Tu+1duvytw9sImvXfvdn9RbmqOZtYrY0Mbe4wvVm2585MhPYexIVTBVZL8z4e4UrKMCbYpUcXxGaxWVfK58X6qo9q5ut4iO1gNHuvfUKobPkuLT+P0nvem6bUTVhF6qiJN27+Q3mpPkkBdWFebOZLZWEb0zmipm1CqaMecXe/QYGP3UsH9tJj/63pwEe15SOgj/7KeK7CE5nf+RWkUuvGziTvibusx7mFTRFc6jhqWfKmZehwjPNrMnxMVqFXFxpFfDy+w4vZrbrD2wt7KaoeYszviSTtUqZp7W5GYovzi9E4ukTjA0Y6NHqkKpYvQ7EyekUm2KVHF85qWKxWKxWK0K1irCA39Uq6jfKpwqogrwdht+sUba4hmTjnbhdrS9tFA1Mb0xR69lzp+qEW7SlvydqaI3fKlUkd/Q6TuZY+7wcX2wtU3OjXoT7JY4myrixc3UHYJjfaZWka6QTXww7aXB8WUZGPWett2lnPrPiVrFtu45EXWfTkcXNuTBMm1HLwDNrVUE62iwAU3C4niqGNkDo7noRvrWFT8vKuTa/jiuTh4T8oszUasYvMgSjDfZQ+fvqyPqnSazRvup4gPalHfMOSWNpYpu1y1fq0gmUyBVjGXUGceA9gs/f9JDDWJ6hKz+yOzuQ+clQ0eW7pUCqWIo7b8jVeQP+7vdbrvZbNNmqvl48kp/gqOrOJhQV7aI8ka87adSxZxaRTjnbe0jiMjRT5rC2XtDqJhcQdHsBsOOpYpgJoPCVTyVaGVkvsFBsXH24vRrFcGMx23O22oVw3vg0KxNpYpZZ77b7Tb7/92L67DbT/JV751qz1ic7BFiswouKkUzPedINWdfHV8bzcEh/g705rF0m5Kf8/lfHIqbV6uot1P/BGKopjzQaH9gqnhrRn1jrWLT7+YezklwVjLStgdrY/DollmuuakitwFyE5+XKpJtPHZGmN0W3elJ2Bh3LdTAwX1wXNkSRfhK/+j0tisgvTFHLUE97+tVc1ys9Avgbzi3z9a2h1ZSEmXS7R9kh+EdPpjXOG1FizNWZm/mJlvUyR4X8qssW6sIV9hAqkhW3OBKCsY0tmYnjirtQnWJYbNKX+o1xelIowPgvMWZqlWkg04eqeLRDizy2NpIxpUe1AevgLy/TcnN+dwvDh9iz1SxbmNo+4Wadxa1T4OfP9JNTGqiktEfOjrc7jXp3vnFLj1odk3uUOKPBwxPi6e/SLNmMl+riCZQIsZvmr71w+q9Jl3Ps+87ML77DJ3Ojs/zeK0ibSwyDV838egUNGzZ567f0eWbkUnya276Csj4O/kaem4lBB/YY9dqT6yj9TfWPO7CjR21X9N7YO7n68Gnx+Yyvyi58/FYtzijs5+foRmLk69V9BL2vCPVPKNrYyS49Cf18W2KWsUnmpEqvoT9QgVfyli1/aubVWLncziqhKwN5jmVVAEAfDapAgAoQ6oAAMqQKgCAMqQKAKAMqQIAKEOqAADKkCoAgDKkCgCgDKkCAChDqgAAypAqAIAypAoAoAypAgAoQ6oAAMqQKgCAMqQKAKAMqQIAKEOqAADKkCoAgDKkCgCgDKkCAChDqgAAyphMFX9+Lc5uzi9+vTYvvN7dnl/9bv76e39xk/559vg8b2zPVzfnZ7f3f5KBfl+f3ZyfhaPtj6T/KQDgc+2bKqo/z26un3a73W739Hh+FiSDeuDH64ub87PgX5sPorHlI8jr3W3zwVw6aWZgLLsAAJ9g/1pFnSQufr3WsaBJGM1bi7u/Tb2hbfj/3l/cnF/8eu3G1hQkmn+Lu7/hyJ+rbJEtVzTBov4IAHAUxlJFHRraf9d3bZ2g9+/i12t9RePm+qmfRfqpIowgu91u9/rnbxMXqspHM/VcsGjqGa6DAMDxmKpV1O13WKvY7Xb9KsVu19Qnbu//hPWMYPhsqri4PT+7uX76fX9xm88rmanvxjMHAPAZplJFVX6YlSqCPhZB34jqUsXvfqp4vbs9P7u9vqpSRdIJNB1tHF+CGdO7AgCOxXiqaLtGTqeK9nLJ7f2fqsl/fG5KHdlUUQ1zf1eniiaUhFdbbu+ffi3yBYmuW4beFQBwHEZTRVxyeHzu9bQIqhG/mmb+9v7P7+uoIHFz/TTQW7Ppldmmiu5/xlNFFEGUKwDgGIyliuBnGlXzn/STSGsVt4uLm/Oz2/u7psm/+t3035z8DUj9qXmpop16tnsHAPApJlPFxW36y9LdLtuv4vmpyhC311e3bZ6IihxJb83dbtcVM/a5AlIP+fi863cLBQA+y8QvS5t2fdZvQJJ7ZTbViPbOFjNSxYxaRT3adtJVfNG7AgA+22i/iuen35m7YO1281JF2N4XSxWZ36REd7kAAD7LHvfWHOyq2f4WI0oVdWNfdaWc269i4gpIeO0jMHBTDQDgkN5wx+7dbkatoh4gvTAxv1bxFAxfpYqm40Wub6abYgHAp/uYVFFfp+i38X/SKxpzU8VYpKhMPekUAPhYH5EqqmsZcese/CQk6gCRpoqr9gad4W210h6aY7Pqh6YA8DkmUwUAwCxSBQBQhlQBAJQhVQAAZUgVAEAZUgUAUIZUAQCUMZYq/gMA+O+///77r0Cq+AcAfHtSBQBQhlQBAJQhVQAAZUgVAEAZUgUAUIZUAQCUIVUAAGVIFQBAGVIFAFCGVAEAlHHYVPHycLlYLC4fXj5ykQCAT3HIVPHycLn48eOHVAEAJ+lwqeLl4XJx+fDyU6oAgNN0qFRRZ4p//6QKADhRB0oVXZaQKgDgRB0kVYRJQqoAgBN1iFTx88ei78fPwywgAHAgB79fhVoFAJwoqQIAKMO9NQGAMqQKAKAMqQIAKEOqAADKkCoAgDKkCgCgDKkCAChDqgAAypAqAIAypAoAoAypAgAoQ6oAAMo4ZKp4ebhMH4HePSS9e+RY7rX4ceoeTwYAR+hQqeLnj8Xi8uHhR5gqqtde/v2rA8ePn9WL9RAvD5f5/PDzR5JNAIAjcJhU8fJw2USGLg/Ez0TPZIixWKFcAQDH5rD9KsJUEf5/dW0krUAM1CReHi6VKgDg+Hxqqrh8eKnzRP1/YVgIro8Er+hXAQDH6nNrFWFCiFLFy8PlSHjQsQIAjtDnpYqug2b7Z9h1c7QeoWMFAByfz0sV8TWO7p3+lY9UkkcAgKNwoFQR3m0i6JfZ9NLsOmr2BuwPqV8FABwl99YEAMqQKgCAMqQKAKAMqQIAKEOqAADKkCoAgDKkCgCgDKkCAChDqgAAypAqAIAypAoAoAypAgAo40CpIno4WPd4sP7Txf6FDxgLnyIWPnbM08UA4AgdLlX0osDLw2UUL6r///mjCRjh+5H4eeoAwHH4vFTx8nAZZoOfP3oRYixWKFcAwLH5vFSRVBySkJEZYmRIAODzfUa/ijpfhKGhej/KCj9/pB0o2q4VChUAcIQ+4TcgXVzossblw8+oAvHycDkSHnSsAIAj9Bm/LM2Ggq6X5kSkqAdWrwCAI3P4VPHycNkLFWHO6F/5mDMGAOCzHSZV5LpV5G9MEd6WIryRRX4MAMDxcG9NAKAMqQIAKEOqAADKkCoAgDKkCgCgDKkCAChDqgAAypAqAIAypAoAoAypAgAoQ6oAAMqQKgCAMg6WKoLHg3WPG808Xyx8vJiniAHAF3K4Z5Y2EaH7/58/moARvt8Jn48OABy7g6SKl4fLMB78/NGLEIOxQrkCAL6Kg6SKpOiQhIzMEEODAQDH6zBXQMLQUHWwiOLCzx9RH4q2a4VCBQB8IYfqrdl11rx8+BkVIV4eLofyg44VAPCFfMYvS7temmORoh5SvQIAvoiDp4qw/pBc+Ui9PFyqVQDAl3GgVJG5MUV0Z4r2RhbBbS30qwCAL8W9NQGAMqQKAKAMqQIAKEOqAADKkCoAgDKkCgCgDKkCAChDqgAAypAqAIAypAoAoAypAgAoQ6oAAMo4ZKqonhwWPYQ099Sx/IsjrwMAx+BQqaJ66PnDjzBVBA9C7x56nn1x5HUA4EgcJlW8PFy2kaGNAz9/hDWHl4fLxeXDS/bFoYELrgcA4L0O268iTBXh/1fXRhaLHz9yL/4cGFi1AgCOyaemisuHlzoi1P/340fuxZ8DA0sVAHBMPrdWEXa8bFJF/8WfAwNLFQBwTD4vVSR9LquuEj9zL74MDKxfBQAck89LFdHPOrp3si+OvA4AHIkDpYruVhO1KhQ0HS8XaSGi9+LI6wDAUXBvTQCgDKkCAChDqgAAypAqAIAypAoAoAypAgAoQ6oAAMqQKgCAMqQKAKAMqQIAKEOqAADKKJMqAAD+e3+qAACYT6oAAMqQKgCAMqQKAKAMqQIAKEOqAADKkCoAgDKkCgCgDKkCAChDqgAAypAqAIAypAoAoAypAgAoQ6oAAMqQKgCAMqQKAKAMqQIAKEOqAADKkCoAgDKkCgCgjMlU8efX4uzm/OLXa/PC693t+dXv5q+/9xc36Z9nj8/zxvZ8dXN+dnv/Jxno9/XZzflZONqM17vb83jGAIBPtW+qqP48u7l+2u12u93T4/lZkAzqgR+vL27Oz4J/bT6IxpaPIHVcOBtNJ1IFAByd/WsVdZK4+PVax4ImYTRvLe7+NvWGNhb8vb+4Ob/49dqNrSlINP8Wd3/DkT9XoSEoVzxfBYP1U0Udd8aCCADwkcZSRR0a2n/Xd3WhIvPv4tdr0/BfP/WzSD9VhBFkt9vtXv/8bZJBVflopt4EC6kCAI7bVK1i4EJDr0qx2zX1idv7P2E9Ixg+myoubs/Pbq6fft9f3ObzShxZpAoAOFZTqaJqy2eliqCPRdA3oooCv/up4vXu9vzs9vqqShVJJ9B0tNdPUgUAHLnxVNH0zZyRKtrLJbf3f6oE8PjctP3ZVFENc39Xp4omlIRXW27vn34tmosgdb6Z+CdVAMBnGU0Vccnh8bnX0yKoRvxqel/e3v/5fR0VJG6unwZ6aza9MttU0f1PL1Xk581vQADgWIyliuBnGlXzn/STSGsVt4uLm/Oz2/u7pupw9bvpvzn5G5D6U1IFAHxZk6ni4jb9Zelul+1X8fxUZYjb66vbNk9ERY6kt+Zut+uKGVNXQOp3uwsc/VRRT3H03lkAwIeZ+GVp067P+g1Icq/MphrR3tliRqoYrFVIFQBw7Eb7VTw//c7cBWu3m5cqwl9tSBUAcPL2uLfmYFfNpsPm3yhVRD/1nNuvwhUQAPiy3nDH7t1uRq2iHqC9vcTQ2AZrFU/B8FIFAHwBH5MqBhv4P+lvOvZMFTP+SRUA8Dk+IlVU1zLi1j34SUj06PM0VVy1N+iMbqs1h1oFAHyqyVQBADCLVAEAlCFVAABlSBUAQBlSBQBQhlQBAJQhVQAAZYyliv8AAP7777///iuQKv4BAN+eVAEAlCFVAABlSBUAQBlSBQBQhlQBAJQhVQAAZUgVAEAZUgUAUIZUAQCUIVUAAGUcLFX8/LGoXT68pC8FLwIAX9SBUsXPH4sfP//9+/fv38vDZSZC/PyxaAYAAL6mw18BGYwVyhUA8KUdPlXkyhIvD5dKFQDwxR06Vfz8EfWhaLtWKFQAwFd30FTx8nA5lB90rACAr+5wqWIkUvz7p2MFAHx5h0oVyZWP1MvDpVoFAHxth0kV4Z0pKj9+VknC/SoA4FS4tyYAUIZUAQCUIVUAAGVIFQBAGVIFAFCGVAEAlCFVAABlSBUAQBlSBQBQhlQBAJQhVQAAZUgVAEAZB0sVwbPEumeTdk8da58uFj6IzCPHAOALOUyqeHm4bCNC9/8/fzQBI3y/8/OHp6MDwNdxkFTx8nAZxoOfP3oRYjBWKFcAwFdxkFSRFB2SkJEZYmgwAOB4HeYKSBgaqg4WUVz4+SPqQ9F2rVCoAIAv5FC9NbvOmpcPP6MixMvD5VB+0LECAL6Qz/hladdLcyxS1EOqVwDAF3HwVBHWH5IrH6mXh0u1CgD4Mg6UKjI3pojuTNHeyCK4rYV+FQDwpbi3JgBQhlQBAJQhVQAAZUgVAEAZUgUAUIZUAQCUIVUAAGVIFQBAGVIFAFCGVAEAlCFVAABlSBUAQBkHSxWZ54uFjxfzIDEA+OoO98zS+pHmLw+XmQgRPh8dAPiSDn8FZDBWKFcAwJd2+FSRK0u8PFwqVQDAF3foVPHzR9SHou1aoVABAF/dQVPFy8PlUH7QsQIAvrrDpYqRSPHvn44VAPDlHSpVJFc+Ui8Pl2oVAPC1HSZVhHemqPz4WSUJ96sAgFPh3poAQBlSBQBQhlQBAJQhVQAAZUgVAEAZUgUAUIZUAQCUIVUAAGVIFQBAGVIFAFCGVAEAlCFVAABlHC5VdE8Y8yQxADhFB0oVwYPQPfQcAE7TwZ6EHhQoXh4u1SsA4OQcJFX8/NFVJ14eLheLhWoFAJycQ6WKy4eXOk/U/ydVAMCJOVitIuylKVUAwAk6SKpIOmjqVwEAp+jwvwGJelkAACfjYPeraHpp6qgJACfKvTUBgDKkCgCgDKkCAChDqgAAypAqAIAypAoAoAypAgAoQ6oAAMqQKgCAMqQKAKAMqQIAKKNMqgAA+O/9qQIAYD6pAgAoQ6oAAMqQKgCAMqQKAKAMqQIAKEOqAADKkCoAgDL+f1JW4TqkB8UpAAAAAElFTkSuQmCC" alt="" />
------------------------------
水题、
AC代码:
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int times=Integer.parseInt(sc.nextLine());
while(times-->0){
String s=sc.nextLine();
int ans=Integer.parseInt(s.substring(1,s.length()));
System.out.println(ans);
} } }
题目来源: http://acm.nyist.net/JudgeOnline/problem.php?pid=96
NYOJ题目96 n-1位数的更多相关文章
- nyoj 题目2 括号配对问题
描述 今天发现了nyoj,如获至宝.准备开刷. 括号配对问题 现在,有一行括号序列,请你检查这行括号是否配对. 输入 第一行输入一个数N(0<N<=100),表示有N组测试数据.后面的 ...
- NYOJ题目27水池数目
--------------------------------------------- 这道题有点坑,也怪我总是有点马虎,按照正常人的思维0是表示有水池啊竟然是1表示有水池,最坑的是写反了竟然还能 ...
- NYOJ题目20吝啬的国度
-----------------------------------------n-1条边的无向连通图是一棵树,又因为树上两点之间的路径是唯一的,所以解是唯一的.(注意并不一定是二叉树,所以最好采用 ...
- NYOJ题目28大数阶乘
-------------------------------------祭出BigInteger AC代码: import java.math.BigInteger; import java.uti ...
- NYOJ题目198数数
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsYAAAK1CAIAAABEvL+NAAAgAElEQVR4nO3drXLkurvv8X0T4bmQYF
- NYOJ题目170网络的可靠性
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAs8AAANvCAIAAACte6C6AAAgAElEQVR4nOydPbLcNhOu7yaUayGOZy
- NYOJ题目168房间安排
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAssAAAOTCAIAAADGwNmiAAAgAElEQVR4nOy9PY7cyLPufTchXwsZu9
- NYOJ题目125盗梦空间
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAssAAANLCAIAAAA4rUfgAAAgAElEQVR4nOydq7LdyrKm+yXM/SDG4y
- NYOJ题目124中位数
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAssAAAJUCAIAAABsWvwaAAAgAElEQVR4nO3dPXLjuraG4TsJ5xqIYw
随机推荐
- MySQL中快速复制数据表方法汇总
本文将着重介绍两个MySQL命令的组合,它将以原有数据表为基础,创建相同结构和数据的新数据表. 这可以帮助你在开发过程中快速的复制表格作为测试数据,而不必冒险直接操作正在运行 的数据表. 示例如下: ...
- css弹性布局
1.弹性布局是什么 在移动端一种方便的布局方式,打破了之前用浮动,定位的布局,更加灵活. 2.弹性布局的格式 包含父元素和子元素,有对应的属性应用在父元素和子元素达到布局的目的 3.父元素的属性 要开 ...
- aspcms 留言 搜索
留言: <form method='POST' name='myform' onSubmit='return metmessagesubmit("姓名不能为空"," ...
- [转载]JavaEE学习篇之——JDBC详解
原文链接:http://blog.csdn.net/jiangwei0910410003/article/details/26164629 目录1.摘要2.JDBC的使用步骤 1.注册驱动 只做一次 ...
- 如何使用coding.net
由于我有一位十分聪明能干的室友会使用coding.net,于是我决定奉献一下室友的智慧,告诉大家如何使用conding.net上交作业.(如有说错的地方希望大家可以指出来) 首先登陆codin ...
- static小结
1.隐藏:编译多个文件时,所有未加static的全局变量.全局函数都具有全局可见性. 如果加了static,就会对其他源文件隐藏,利用这一特性可以在不同文件中定义相同的 变量名或函数名,而不用担心冲突 ...
- [翻译]opengl扩展教程1
[翻译]opengl扩展教程1 原文地址https://www.opengl.org/sdk/docs/tutorials/ClockworkCoders/extensions.php [翻译]ope ...
- c语言随机函数&&时间函数
c语言中的随机函数为rand(),但是rand生成的值得大小主要相对一个变量才产生的一定有含义的数,这个相对的变量我们可以再srand()函数中进行设置,srand函数是void类型,内部含一个无符号 ...
- Colorful tree
cnbb 我被数组清零卡了一天.. 子树改色询问子树颜色数.. 先考虑颜色为x的节点对祖先答案的贡献,那么我们考虑把所有这些节点都搞出来,按dfs序排序,然后考虑每个节点a掌管的祖先是它和按dfs序的 ...
- VQ结合SVM分类方法
今天整理资料时,发现了在学校时做的这个实验,当时整个过程过重偏向依赖分类器方面,而又很难对分类器性能进行一定程度的改良,所以最后没有选用这个方案,估计以后也不会接触这类机器学习的东西了,希望它对刚入门 ...