4271: Love Me, Love My Permutation

Description

Given a permutation of n: a[0], a[1] ... a[n-1], ( its elements range from 0 to n-1, For example: n=4, one of the permutation is 2310) we define the swap operation as: choose two number i, j ( 0 <= i < j <= n-1 ), take a[i] out and then insert a[i] to the back of a[j] of the initial permutation to get a new permutation :a[0], a[1], ..., a[i-1], a[i+1], a[i+2] ... a[j-1], a[j], a[i], a[j+1], ..., a[n-1]. For example: let n = 5 and the permutation be 03142, if we do the swap operation be choosing i = 1, j = 3, then we get a new permutation 01432, and if choosing i = 0, j = 4, we get 31420.

Given a confusion matrix of size n*n which only contains 0 and 1 (ie. each element of the matrix is either 0 or 1), the confusion value of a permutation a[0],a[1], ..., a[n-1] can be calculated by the following function:

int confusion()
{
int result = 0;
for(int i = 0;i < n-1; i++)
for(int j = i+1; j < n; j++)
{
result = result + mat[a[i]][a[j]];
}
return result;
}

Besides, the confusion matrix satisfies mat[i][i] is 0 ( 0 <= i < n) and mat[i][j] + mat[j][i] = 1 ( 0 <= i < n, 0 <= j < n, i != j ) given the n, the confusion matrix mat, you task is to find out how many permutations of n satisfies: no matter how you do the swap function on the permutation(only do the swap function once), its confusion value does not increase.

Input

The first line is the number of cases T(1 <= T <= 5), then each case begins with a integer n (2 <= n <= 12), and the next n line forms the description of the confusion matrix (see the sample input).

Output

For each case , if there is no permutation which satisfies the condition, just print one line “-1”, or else, print two lines, the first line is a integer indicating the number of the permutations satisfy the condition, next line is the Lexicographic smallest permutation which satisfies the condition.

Sample Input

2
2
0 1
0 0
3
0 0 0
1 0 1
1 0 0

Sample Output

1
0 1
1
1 2 0 题解:DFS
从后向前搜索,放进去的一位要和后面的每一段(n~n-1,n~n-2...n~0)保持1的个数大于0的个数,如果成立,则这一位可以放这个数,在向前继续搜索。
因为只能前面的数插入到后面,所以不需要考虑新加进去的数会不会对后面已经排好的短造成影响。也是这个原因要从后向前搜索。 AC代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#define M(a,b) memset(a,b,sizeof(a))
using namespace std; int ans[25];
int num[25][25];
int out[25];
int n;
int ct; void print()
{
//cout<<'?'<<endl;
int flag = 1;
for(int i = n-1;i>=0;i--)
{
if(ans[i]<out[i]) {flag = 0; break;}
if(ans[i]>out[i]) break;
}
if(!flag)
for(int i = n-1;i>=0;i--)
out[i] = ans[i];
ct++;
} void dfs(int pos)
{
if(pos>=n)
{
print();
return;
}
if(pos == 0)
{
for(int i = 0;i<n;i++)
{
ans[pos] = i;
dfs(pos+1);
}
}
else
{
for(int i = 0;i<n;i++)
{
int cnt = 0;
int flag = 1;
for(int j = pos-1;j>=0;j--)
{ if(num[i][ans[j]]==0) {flag = 0;break;}
cnt += num[i][ans[j]];
//cout<<i<<' '<<ans[j]<<' '<<num[i][ans[j]]<<' '<<cnt<<endl;
if(cnt<0) {flag = 0;break;}
}
if(flag) {ans[pos] = i; dfs(pos+1);}
}
}
return;
} int main()
{
int t;
scanf("%d",&t);
while(t--)
{
ct = 0;
scanf("%d",&n);
M(num,0);
M(ans,0);
M(out,0x3f);
for(int i = 0;i<n;i++)
for(int j = 0;j<n;j++)
{
scanf("%d",&num[i][j]);
if(i == j) num[i][j] = 0;
else if(num[i][j]==0)
num[i][j] = -1;
}
dfs(0);
if(ct==0) {puts("-1"); continue;}
printf("%d\n",ct);
for(int j = n-1;j>0;j--)
printf("%d ",out[j]);
printf("%d\n",out[0]);
}
return 0;
}

  

 

soj4271 Love Me, Love My Permutation (DFS)的更多相关文章

  1. Tree and Permutation dfs hdu 6446

    Problem Description There are N vertices connected by N−1 edges, each edge has its own length.The se ...

  2. codeforces 691D D. Swaps in Permutation(dfs)

    题目链接: D. Swaps in Permutation time limit per test 5 seconds memory limit per test 256 megabytes inpu ...

  3. codeforces 691D Swaps in Permutation DFS

    这个题刚开始我以为是每个交换只能用一次,然后一共m次操作 结果这个题的意思是操作数目不限,每个交换也可以无限次 所以可以交换的两个位置连边,只要两个位置连通,就可以呼唤 然后连通块内排序就好了 #in ...

  4. HNU Joke with permutation (深搜dfs)

    题目链接:http://acm.hnu.cn/online/?action=problem&type=show&id=13341&courseid=0 Joke with pe ...

  5. 2018中国大学生程序设计竞赛 - 网络选拔赛 1009 - Tree and Permutation 【dfs+树上两点距离和】

    Tree and Permutation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Oth ...

  6. hdu6446 Tree and Permutation 2018ccpc网络赛 思维+dfs

    题目传送门 题目描述:给出一颗树,每条边都有权值,然后列出一个n的全排列,对于所有的全排列,比如1 2 3 4这样一个排列,要算出1到2的树上距离加2到3的树上距离加3到4的树上距离,这个和就是一个排 ...

  7. codeforces 285 D. Permutation Sum 状压 dfs打表

    题意: 如果有2个排列a,b,定义序列c为: c[i] = (a[i] + b[i] - 2) % n + 1 但是,明显c不一定是一个排列 现在,给出排列的长度n (1 <= n <= ...

  8. leetcode 784. Letter Case Permutation——所有BFS和DFS的题目本质上都可以抽象为tree,这样方便你写代码

    Given a string S, we can transform every letter individually to be lowercase or uppercase to create ...

  9. 【HDOJ6628】permutation 1(dfs)

    题意:求1到n的排列中使得其差分序列的字典序为第k大的原排列 n<=20,k<=1e4 思路:爆搜差分序列,dfs时候用上界和下界剪枝 #include<bits/stdc++.h& ...

随机推荐

  1. Sublime Text 3 编辑器使用

    今天打开别人的python脚本,想找IDE的时候,本来在eclipse中有安装python插件,但是好像是太旧了,很多sys的方法找不着 又上网找了一下python的IDE工具,看好多人在歌颂这个Su ...

  2. RNN 入门教程 Part 4 – 实现 RNN-LSTM 和 GRU 模型

    转载 - Recurrent Neural Network Tutorial, Part 4 – Implementing a GRU/LSTM RNN with Python and Theano ...

  3. 深入浅出Redis02 使用Redis数据库(String类型)

    一 String类型 首先使用启动服务器进程 : redis-server.exe 1. Set 设置Key对应的值为String 类型的value. 例子:向 Redis数据库中插入一条数据类型为S ...

  4. DNS(二)之bind的视图功能

    bind视图工作原理 在我国目前的网络环境下面,多个运营商并存,运营商之间的存在一定的网络互通问题,如果把来自不同的运营商或者地域的所有用户通过简单的A记录分配到一个机房,那么就存在部分网民访问延时大 ...

  5. 【转】CSS3的REM设置字体大小

    rem 长度单位   在Web中使用什么单位来定义页面的字体大小,至今天为止都还在激烈的争论着,有人说PX做为单位好,有人说EM优点多,还有人在说百分比方便,以至于出现了CSS Font-Size: ...

  6. c++异常捕获

    概念: “C++异常”就是 try{}catch(...){} “SEH异常”就是 __try{} __except(-//){} (关于这两种异常,如有不了解的地方,网上有很多资料可以参考) 目前微 ...

  7. JavaScript学习笔记——变量和数据类型

    一.javascript命名规范 1. 严格区分大小写 2. 变量的命名必须以字母或 _或 $开头,余下的部分可以是任意的字母,数字,或者是 _或者是$ 3.不能用关键字或者是保留字命名. 4.jav ...

  8. MySQL学习笔记——增删改查

    有关数据库的DML操作 -insert into -delete.truncate -update -select -条件查询 -查询排序 -聚合函数 -分组查询 DROP.TRUNCATE.DELE ...

  9. 使用ASP.NET Web Api构建基于REST风格的服务实战系列教程【九】——API变了,客户端怎么办?

    系列导航地址http://www.cnblogs.com/fzrain/p/3490137.html 前言 一旦我们将API发布之后,消费者就会开始使用并和其他的一些数据混在一起.然而,当新的需求出现 ...

  10. 横竖屏切换时,Activity的生命周期

    横竖屏切换时,Activity的生命周期 1.新建一个Activity,并把各个生命周期打印出来 2.运行Activity,得到如下信息 onCreate-->onStart-->onRe ...