BZOJ3873 : [Ahoi2014]拼图
如果答案在某个碎片内部,那么直接悬线法解决,时间复杂度$O(n\sum)$。
如果$n$比较大,那么$\sum$比较小。
求出每个点向上能延伸的长度,枚举每个点向上这条线段作为短板。
算出完全可选的碎片的长度之和以及不能完全选,左边右边最大次大延伸距离,更新答案。
时间复杂度$O(n\sum^2)$。
如果$n$比较小,那么暴力枚举上下边界,计算答案方法同上。
时间复杂度$O(n^2\sum)$。
总时间复杂度$O(n\sum\sqrt{n\sum})$。
#include<cstdio>
const int N=100010,M=320;
int T,num,n,m,i,j,k,x,cnt,FL0,GL,FL1,FR0,GR,FR1,ans;
inline void up(int&f0,int&g0,int&f1,int x,int y){
if(x>f0){f1=f0,f0=x,g0=y;return;}
if(x>f1)f1=x;
}
inline void uans(int x){if(ans<x)ans=x;}
namespace NSMALL{
int st[N],en[N],f[N],g[N],w[N];char a[M][N],s[N];
void solve(){
for(i=1;i<=num;i++){
scanf("%d",&x);
st[i]=m+1;
en[i]=m+x;
for(j=1;j<=n;j++){
scanf("%s",s);
for(k=0;k<x;k++)a[j][k+st[i]]=s[k]-'0';
}
m+=x;
}
for(i=1;i<=m;i++)f[i]=1,g[i]=m,w[i]=0;
for(i=1;i<=n;i++){
for(GL=j=1;j<=m;j++)if(!a[i][j]){
w[j]++;
if(GL>f[j])f[j]=GL;
}else w[j]=0,f[j]=1,g[j]=m,GL=j+1;
for(GR=j=m;j;j--)if(!a[i][j]){
if(GR<g[j])g[j]=GR;
uans(w[j]*(g[j]-f[j]+1));
}else GR=j-1;
}
for(i=1;i<=n;i++){
for(k=1;k<=num;k++)f[k]=en[k],g[k]=st[k];
for(j=i;j<=n;j++){
cnt=FL0=GL=FL1=FR0=GR=FR1=0;
for(k=1;k<=num;k++){
for(x=st[k];x<=en[k];x++)if(a[j][x])break;
if(f[k]>x-1)f[k]=x-1;
for(x=en[k];x>=st[k];x--)if(a[j][x])break;
if(g[k]<x+1)g[k]=x+1;
if(f[k]==en[k]){cnt+=en[k]-st[k]+1;continue;}
up(FL0,GL,FL1,f[k]-st[k]+1,k);
up(FR0,GR,FR1,en[k]-g[k]+1,k);
}
if(GL!=GR)uans((j-i+1)*(cnt+FL0+FR0));else{
uans((j-i+1)*(cnt+FL0+FR1));
uans((j-i+1)*(cnt+FL1+FR0));
}
}
}
}
}
namespace NBIG{
int st[M],en[M],f[M],g[M],w[M];char a[N][M],s[M];
void solve(){
for(i=1;i<=num;i++){
scanf("%d",&x);
st[i]=m+1;
en[i]=m+x;
for(j=1;j<=n;j++){
scanf("%s",s);
for(k=0;k<x;k++)a[j][k+st[i]]=s[k]-'0';
}
m+=x;
}
for(i=1;i<=m;i++)f[i]=1,g[i]=m,w[i]=0;
for(i=1;i<=n;i++){
for(GL=j=1;j<=m;j++)if(!a[i][j]){
w[j]++;
if(GL>f[j])f[j]=GL;
}else w[j]=0,f[j]=1,g[j]=m,GL=j+1;
for(GR=j=m;j;j--)if(!a[i][j]){
if(GR<g[j])g[j]=GR;
uans(w[j]*(g[j]-f[j]+1));
}else GR=j-1;
}
for(i=1;i<=m;i++)w[i]=0;
for(i=1;i<=n;i++){
for(j=1;j<=m;j++)if(a[i][j])w[j]=0;else w[j]++;
for(j=1;j<=m;j++)if(w[j]){
cnt=FL0=GL=FL1=FR0=GR=FR1=0;
for(k=1;k<=num;k++){
for(x=st[k];x<=en[k];x++)if(w[x]<w[j])break;
f[k]=x-1;
for(x=en[k];x>=st[k];x--)if(w[x]<w[j])break;
g[k]=x+1;
if(f[k]==en[k]){cnt+=en[k]-st[k]+1;continue;}
up(FL0,GL,FL1,f[k]-st[k]+1,k);
up(FR0,GR,FR1,en[k]-g[k]+1,k);
}
if(GL!=GR)uans(w[j]*(cnt+FL0+FR0));else{
uans(w[j]*(cnt+FL0+FR1));
uans(w[j]*(cnt+FL1+FR0));
}
}
}
}
}
int main(){
scanf("%d",&T);
while(T--){
scanf("%d%d",&num,&n);
m=ans=0;
if(n<=315)NSMALL::solve();else NBIG::solve();
printf("%d\n",ans);
}
return 0;
}
BZOJ3873 : [Ahoi2014]拼图的更多相关文章
- BZOJ 3873: [Ahoi2014]拼图
BZOJ 3873: [Ahoi2014]拼图 标签(空格分隔): OI-BZOJ OI-DP Time Limit: 10 Sec Memory Limit: 256 MB Description ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- 「AHOI2014/JSOI2014」拼图
「AHOI2014/JSOI2014」拼图 传送门 看到 \(n \times m \le 10^5\) ,考虑根号分治. 对于 \(n < m\) 的情况,我们可以枚举最终矩形的上下边界 \( ...
- [AHOI2014/JSOI2014] 解题报告
[AHOI2014/JSOI2014] 奇怪的计算器 一个很关键的结论,任何时候每个数的相对大小是不变的. 于是可以把这个相对大小当成线段树的权值,每次只需要维护一下区间极值和tag就好了,关于操作四 ...
- bzoj3874&2832 [Ahoi2014]宅男计划 模拟退火,三分
[Ahoi2014&Jsoi2014]宅男计划 Time Limit: 1 Sec Memory Limit: 256 MBSubmit: 962 Solved: 371[Submit][ ...
- [luogu] P4040 [AHOI2014/JSOI2014]宅男计划(贪心)
P4040 [AHOI2014/JSOI2014]宅男计划 题目背景 自从迷上了拼图,JYY就变成了个彻底的宅男.为了解决温饱问题,JYY不得不依靠叫外卖来维持生计. 题目描述 外卖店一共有N种食物, ...
- Bzoj 3874: [Ahoi2014&Jsoi2014]宅男计划 三分+贪心
3874: [Ahoi2014&Jsoi2014]宅男计划 Time Limit: 1 Sec Memory Limit: 256 MBSubmit: 861 Solved: 336[Su ...
- 拼图小游戏之计算后样式与CSS动画的冲突
先说结论: 前几天写了几个非常简单的移动端小游戏,其中一个拼图游戏让我郁闷了一段时间.因为要获取每张图片的位置,用`<style>`标签写的样式,直接获取计算后样式再用来交换位置,结果就悲 ...
- JavaScript版拼图小游戏
慕课网上准备开个新的jQuery教程,花了3天空闲时间写了一个Javascript版的拼图小游戏,作为新教程配套的分析案例 拼图游戏网上有不少的实现案例了,但是此源码是我自己的实现,所以不做太多的比较 ...
随机推荐
- 开启后台 Service 闪退
04-29 15:36:23.395: E/ActivityThread(15275): Performing stop of activity that is not resumed: {com.e ...
- NYOJ题目839合并
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAskAAAKgCAIAAADmrHcoAAAgAElEQVR4nO3dO1LsOheG4X8S5AyE2A
- php PDO:数据访问抽象层
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- Android ANR分析(三)
http://www.jianshu.com/p/8964812972be http://stackoverflow.com/questions/704311/android-how-do-i-inv ...
- 【JAVA与DOM4J实现对XML文档的CRUD操作】
一.简介 1.网上下载DOM4J 1.6.1压缩包,解压开之后,发现几个目录和一个jar文件,jar文件是必须的文件其它目录: docs目录:帮助文档的目录,单击index.html: Quick s ...
- DIV宽度自动缓慢变化
<!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...
- HTML5+CSS3的响应式网页设计:自动适应屏幕宽度
这几天都在修改博客上面的样式.本来用的是d83.0的模板.自己又修改了许多地方,其中自己修改的一些地方在手机里面显示的效果不是很理想,于是想改成自适应的效果.对CSS3不是特别的熟练,只能去网上找找案 ...
- SQL SERVER 索引之聚集索引和非聚集索引的描述
索引是与表或视图关联的磁盘上结构,可以加快从表或视图中检索行的速度. 索引包含由表或视图中的一列或多列生成的键. 这些键存储在一个结构(B 树)中,使 SQL Server 可以快速有效地查找与键值关 ...
- POJ1699 HDU 1560 Best Sequence(AC自动机 最短路)
曾写过迭代加深搜索的方法,现在使用在AC自动上跑最短路的方法 dp[i][j]表示状态为到节点i,模式串是否包含的状态为j的最短串的长度,则状态转移方程为: dp[nx][ny] = min(dp[x ...
- go sample - hello world
入门级别的hello world package mainimport "fmt"func main() { fmt.Println("blibliblbibl!&quo ...