将分组计划按照$k$从小到大排序,维护一个单调栈,每个元素为一个矩形,按最底下元素从高到低排列,栈顶最低。

每次加入一个矩形可选区域,维护单调栈,可以往回合并。

然后将所有最低点不满足的矩形取出,合并后放回。

每次考虑栈顶区域,将它取到和下一个矩形底边一致时合并。

可持久化线段树维护,时间复杂度$O((n+s)\log n)$。

#include<cstdio>
#include<algorithm>
const int N=500010,M=200010,P=N*20;
int n,m,k,i,j,x,g[N],v[N],nxt[N],a[M],t;
int val[P],l[P],r[P],tot,T[N];
struct E{int r,l,d,k;E(){}E(int _r,int _l,int _d,int _k){r=_r,l=_l,d=_d,k=_k;}}q[M];
inline void read(int&a){char c;while(!(((c=getchar())>='0')&&(c<='9')));a=c-'0';while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';}
int ins(int x,int a,int b,int c){
int y=++tot;val[y]=val[x]+1;
if(a==b)return y;
int mid=(a+b)>>1;
if(c<=mid)l[y]=ins(l[x],a,mid,c),r[y]=r[x];else l[y]=l[x],r[y]=ins(r[x],mid+1,b,c);
return y;
}
int ask(int x,int y,int a,int b,int c,int d){
if(c>d)return 0;
if(c<=a&&b<=d)return val[x]-val[y];
int mid=(a+b)>>1,t=0;
if(c<=mid)t=ask(l[x],l[y],a,mid,c,d);
if(d>mid)t+=ask(r[x],r[y],mid+1,b,c,d);
return t;
}
int low(int x,int y,int a,int b,int c){
if(val[x]==val[y])return 0;
if(a==b)return a;
int mid=(a+b)>>1;
if(c<=mid){
int t=low(l[x],l[y],a,mid,c);
if(t)return t;
}
return low(r[x],r[y],mid+1,b,c);
}
int kth(int x,int y,int c,int k){
k+=ask(x,y,1,n,1,c-1);
int a=1,b=n,mid,t;
while(a<b){
mid=(a+b)>>1;
t=val[l[x]]-val[l[y]];
if(k<=t)x=l[x],y=l[y],b=mid;else k-=t,x=r[x],y=r[y],a=mid+1;
}
return a;
}
inline void merge(){
if(t<2)return;
if(q[t].d>=q[t-1].d){
q[t-1].r=q[t].r;
if(q[t].d==q[t-1].d)q[t-1].k+=q[t].k;
t--;
}
}
inline bool solve(){
read(k);
int sum=0;
for(i=1;i<=k;i++){
read(a[i]);
sum+=a[i];
if(sum>n)return 0;
}
std::sort(a+1,a+k+1);
for(i=1,t=0;i<=k;i++){
int x=a[i],d=low(T[x],T[a[i-1]],1,n,x),l,r=0;
if(d)q[++t]=E(T[x],T[a[i-1]],d,ask(T[x],T[a[i-1]],1,n,d,d)),merge();
while(t&&q[t].d<x){
if(!r)r=q[t].r;
l=q[t--].l;
}
if(r){
d=low(r,l,1,n,x);
if(d)q[++t]=E(r,l,d,ask(r,l,1,n,d,d)),merge();
}
while(x){
if(!t)return 0;
if(t==1){
int now=ask(q[t].r,q[t].l,1,n,q[t].d+1,n)+q[t].k;
if(now<x)return 0;
if(now==x)t--;
else if(q[t].k>x)q[t].k-=x;
else if(q[t].k==x){
q[t].d=low(q[t].r,q[t].l,1,n,q[t].d+1);
q[t].k=ask(q[t].r,q[t].l,1,n,q[t].d,q[t].d);
}else{
x-=q[t].k;
int d=kth(q[t].r,q[t].l,q[t].d+1,x);
int tmp=ask(q[t].r,q[t].l,1,n,q[t].d+1,d-1);
x-=tmp;
int k=ask(q[t].r,q[t].l,1,n,d,d);
if(x<k){
q[t].d=d;
q[t].k=k-x;
}else{
q[t].d=low(q[t].r,q[t].l,1,n,d+1);
q[t].k=ask(q[t].r,q[t].l,1,n,q[t].d,q[t].d);
}
}
break;
}
int now=ask(q[t].r,q[t].l,1,n,q[t].d+1,q[t-1].d-1)+q[t].k;
if(now<=x){
x-=now;
q[t-1].r=q[t].r;
q[t-1].k+=ask(q[t].r,q[t].l,1,n,q[t-1].d,q[t-1].d);
t--;
}else{
if(q[t].k>x)q[t].k-=x;
else if(q[t].k==x){
q[t].d=low(q[t].r,q[t].l,1,n,q[t].d+1);
q[t].k=ask(q[t].r,q[t].l,1,n,q[t].d,q[t].d);
}else{
x-=q[t].k;
int d=kth(q[t].r,q[t].l,q[t].d+1,x);
int tmp=ask(q[t].r,q[t].l,1,n,q[t].d+1,d-1);
x-=tmp;
int k=ask(q[t].r,q[t].l,1,n,d,d);
if(x<k){
q[t].d=d;
q[t].k=k-x;
}else{
q[t].d=low(q[t].r,q[t].l,1,n,d+1);
q[t].k=ask(q[t].r,q[t].l,1,n,q[t].d,q[t].d);
}
}
break;
}
}
}
return 1;
}
int main(){
read(n);
for(i=1;i<=n;i++)read(x),read(v[i]),nxt[i]=g[x],g[x]=i;
for(i=1;i<=n;i++)for(T[i]=T[i-1],j=g[i];j;j=nxt[j])T[i]=ins(T[i],1,n,v[j]);
read(m);
while(m--)puts(solve()?"1":"0");
return 0;
}

  

BZOJ4369 : [IOI2015]teams分组的更多相关文章

  1. BZOJ 4369: [IOI2015]teams分组

    把一个人看成二维平面上的一个点,把一个K[i]看成左上角为(0,+max),右下角为(K[i],K[i])的一个矩阵,那么可以很好地描述人对于询问是否合法(我也不知道他怎么想到这东西的) 然后把一组询 ...

  2. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  3. jquery.autocomplete 模糊查询 支持分组

    //demo <!DOCTYPE html><html> <head> <meta charset="UTF-8"> <lin ...

  4. CBQW ---分组表单展示

    工作流审核表单后,将表单信息展示页面中. Rest读取展示 展示方式有2 一.              CBQW内容查询, 通过CBQW内容查询.分别通过设置itemstyle和header xsl ...

  5. MySQL最常用分组聚合函数

    一.聚合函数(aggregation function)---也就是组函数 在一个行的集合(一组行)上进行操作,对每个组给一个结果. 常用的组函数: AVG([distinct] expr) 求平均值 ...

  6. 【CF1133E】K Balanced Teams(动态规划,单调队列)

    [CF1133E]K Balanced Teams(动态规划,单调队列) 题面 CF 让你把一堆数选一些出来分成不超过\(K\)组,每一组里面的最大值和最小值之差不超过\(5\),求最多有多少个人元素 ...

  7. CF899A Splitting in Teams

    CF899A Splitting in Teams 题意翻译 n个数,只有1,2,把它们任意分组,和为3的组最多多少 题目描述 There were nn groups of students whi ...

  8. Yet Another Division Into Teams

    E. Yet Another Division Into Teams 首先要想明白一个东西,就是当一个小组达到六个人的时候,它一定可以拆分成两个更优的小组. 这个题可以用动态规划来写,用一个数组来保存 ...

  9. CodeForces 1249A --- Yet Another Dividing into Teams

    [CodeForces 1249A --- Yet Another Dividing into Teams] Description You are a coach of a group consis ...

随机推荐

  1. 【转】Java高手真经全套书籍分享

    (转自:http://blog.sina.com.cn/s/blog_4ec2a8390101cd1n.html) 中文名: Java高手真经 原名: JAVA开发专家 作者: 刘中兵Java研究室 ...

  2. Android手绘效果实现

    效果图 原理 大概介绍一下实现原理.首先你得有一张图(废话~),接下来就是把这张图的轮廓提取出来,轮廓提取算法有很多,本人不是搞图像处理的,对图像处理感兴趣的童鞋可以查看相关资料.如果你有好的轮廓提取 ...

  3. GMap.Net开发之在WinForm和WPF中使用GMap.Net地图插件

    GMap.NET是什么? 来看看它的官方说明:GMap.NET is great and Powerful, Free, cross platform, open source .NET contro ...

  4. Reporting Services 的伸缩性和性能表现规划(转载)

    简介 Microsoft? SQL Server? Reporting Services 是一个将集中管理的报告服务器具有的伸缩性和易管理性与基于 Web 和桌面的报告交付手段集于一身的报告平台.Re ...

  5. Unity3D项目开发一点经验

    我们主要使用3dsmax2010进行制作,输出FBX的类型导入Unity3D中.默认情况下,3dsmax8可以和U3D软件直接融合,自动转换为FBX物体. 注意事项如下: 1.面数控制 在MAX软件中 ...

  6. loj 1379(最短路变形)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=27087 思路:题目的意思是求S->T的所有路径中花费总和小于 ...

  7. C#实现序列化和反序列化

    从我们面试准备上面,我知道了一个知识点,就是我们vs提供的序列化方法有两个,一个叫二进制序列化,一个叫做xml序列化,下面我们说一下二进制序列化的C#实现: 反序列化: public static T ...

  8. 【框架】异步加载大量图片--ImageLoader

    public abstract class BaseImageLoaderProvider { public abstract void loadImage(Context ctx, ImageLoa ...

  9. SpringMyBatis解析2-SqlSessionFactoryBean

    通过分析整合示例中的配置文件,我们可以知道配置的bean其实是成树状结构的,而在树的最顶层是类型为org.mybatis.spring.SqlSessionFactoryBean的bean,它将其他相 ...

  10. HTML DOM学习之三

    1.创建新的HTML元素:appendChild(); 如需向HTML DOM添加元素,首先必须创建该元素,然后把它追加到已有的元素上: <div id="div1"> ...