前言

实验内容:Exercise:Learning color features with Sparse Autoencoders。即:利用线性解码器,从100000张8*8的RGB图像块中提取颜色特征,这些特征会被用于下一节的练习

理论知识:线性解码器http://www.cnblogs.com/tornadomeet/archive/2013/04/08/3007435.html

实验基础说明:

1.为什么要用线性解码器,而不用前面用过的栈式自编码器等?即:线性解码器的作用?

这一点,Ng已经在讲解中说明了,因为线性解码器不用要求输入数据范围一定为(0,1),而前面用过的栈式自编码器等要求输入数据范围必须为(0,1)。因为a3的输出值是f函数的输出,而在普通的sparse autoencoder中f函数一般为sigmoid函数,所以其输出值的范围为(0,1),所以可以知道a3的输出值范围也在0到1之间。另外我们知道,在稀疏模型中的输出层应该是尽量和输入层特征相同,也就是说a3=x1,这样就可以推导出x1也是在0和1之间,那就是要求我们对输入到网络中的数据要先变换到0和1之间,这一条件虽然在有些领域满足,比如前面实验中的MINIST数字识别。但是有些领域,比如说使用了PCA Whitening后的数据,其范围却不一定在0和1之间。因此Linear Decoder方法就出现了。Linear Decoder是指在隐含层采用的激发函数是sigmoid函数,而在输出层的激发函数采用的是线性函数,比如说最特别的线性函数——等值函数。

2.在实验中,在ZCA whitening前进行数据预处理时,每列代表一个样本,但为什么是对patches的每行0均值化(即:每一维度0均值化,具体做法是:首先计算每一个维度上数据的均值(使用全体数据计算),之后在每一个维度上都减去该均值。),而以前的实验都是对每列即每个样本0均值化(即:逐样本均值消减)?

①因为以前是灰度图,现在是RGB彩色图像,如果现在对每列平均就是对三个通道求平均,这肯定不行。因为不同色彩通道中的像素并不都存在平稳特性,而要进行逐样本均值消减(即:单独每个样本0均值化)有一个必须满足的前提:该数据是平稳的(见:数据预处理)。

平稳性的理解可见:http://lidequan12345.blog.163.com/blog/static/28985036201177892790

②因为以前是自然图像,自然图像中像素之间的统计特性都一样,有一定的相关性,而现在是人工分割的图像块,没有这种特性。

3.在实验中,把网络权值显示出来为什么是用displayColorNetwork( (W*ZCAWhite)'),而不像以前用的是display_Network( (W1)')?

因为在本实验中,数据patches在输入网络前先经过了ZCA whitening的数据预处理,变成了ZCA白化后的数据ZCAWhite * patches,所以第一层隐含层输出的实际上是W*ZCAWhite * patches,也就是说从原始数据patches到第一层隐含层输出为W*ZCAWhite * patches的整个过程l转换权值为W*ZCAWhite。

4.PCA Whitening和ZCA Whitening的区别?即:为什么本实验没用PCA Whitening

PCA Whitening:处理后的各数据方差都都相等,并都为1。主要用于降维和去相关性。

ZCA Whitening:处理后的各数据方差不一定为1,但一定相等。主要用于去相关性,且能尽量保持原始数据。

5.优秀的编程技巧:

要学会用函数句柄,比如patches = bsxfun(@minus, patches, meanPatch);

因为不使用函数句柄的情况下,对函数多次调用,每次都要为该函数进行全面的路径搜索,直接影响计算速度,借助句柄可以完全避免这种时间损耗。也就是直接指定了函数的指针。函数句柄就像一个函数的名字,有点类似于C++程序中的引用。当然这一点已经在Deep Learning一之深度学习UFLDL教程:Sparse Autoencoder练习(斯坦福大学深度学习教程)中提到过,但我觉得有必须再强调一下。

实验步骤

1.初始化参数,编写计算线性解码器代价函数及其梯度的函数sparseAutoencoderLinearCost.m,主要是在sparseAutoencoderCost.m的基础上稍微修改,然后再检查其梯度实现是否正确。

2.加载数据并原始数据进行ZCA Whitening的预处理。

3.学习特征,即用LBFG算法训练整个线性解码器网络,得到整个网络权值optTheta。

4.可视化第一层学习到的特征。

实验结果

原始数据

ZCA Whitening后的数据

特征可视化结果,即:每一层学习到的特征

代码

linearDecoderExercise.m

%% CS294A/CS294W Linear Decoder Exercise

%  Instructions
% ------------
%
% This file contains code that helps you get started on the
% linear decoder exericse. For this exercise, you will only need to modify
% the code in sparseAutoencoderLinearCost.m. You will not need to modify
% any code in this file. %%======================================================================
%% STEP : Initialization
% Here we initialize some parameters used for the exercise. imageChannels = ; % number of channels (rgb, so ) patchDim = ; % patch dimension
numPatches = ; % number of patches visibleSize = patchDim * patchDim * imageChannels; % number of input units
outputSize = visibleSize; % number of output units
hiddenSize = ; % number of hidden units sparsityParam = 0.035; % desired average activation of the hidden units.
lambda = 3e-; % weight decay parameter
beta = ; % weight of sparsity penalty term epsilon = 0.1; % epsilon for ZCA whitening %%======================================================================
%% STEP : Create and modify sparseAutoencoderLinearCost.m to use a linear decoder,
% and check gradients
% You should copy sparseAutoencoderCost.m from your earlier exercise
% and rename it to sparseAutoencoderLinearCost.m.
% Then you need to rename the function from sparseAutoencoderCost to
% sparseAutoencoderLinearCost, and modify it so that the sparse autoencoder
% uses a linear decoder instead. Once that is done, you should check
% your gradients to verify that they are correct. % NOTE: Modify sparseAutoencoderCost first! % To speed up gradient checking, we will use a reduced network and some
% dummy patches debugHiddenSize = ;
debugvisibleSize = ;
patches = rand([ ]);
theta = initializeParameters(debugHiddenSize, debugvisibleSize); [cost, grad] = sparseAutoencoderLinearCost(theta, debugvisibleSize, debugHiddenSize, ...
lambda, sparsityParam, beta, ...
patches); % Check gradients
numGrad = computeNumericalGradient( @(x) sparseAutoencoderLinearCost(x, debugvisibleSize, debugHiddenSize, ...
lambda, sparsityParam, beta, ...
patches), theta); % Use this to visually compare the gradients side by side
disp([numGrad grad]); diff = norm(numGrad-grad)/norm(numGrad+grad);
% Should be small. In our implementation, these values are usually less than 1e-.
disp(diff); assert(diff < 1e-, 'Difference too large. Check your gradient computation again'); % NOTE: Once your gradients check out, you should run step again to
% reinitialize the parameters
%} %%======================================================================
%% STEP : 从pathes中学习特征 Learn features on small patches
% In this step, you will use your sparse autoencoder (which now uses a
% linear decoder) to learn features on small patches sampled from related
% images. %% STEP 2a: 加载数据 Load patches
% In this step, we load 100k patches sampled from the STL10 dataset and
% visualize them. Note that these patches have been scaled to [,] load stlSampledPatches.mat %怎么就就这个变量加到pathes上了呢?因为它里面自己定义了变量patches的值!
figure;
displayColorNetwork(patches(:, :)); %% STEP 2b: 预处理 Apply preprocessing
% In this sub-step, we preprocess the sampled patches, in particular,
% ZCA whitening them.
%
% In a later exercise on convolution and pooling, you will need to replicate
% exactly the preprocessing steps you apply to these patches before
% using the autoencoder to learn features on them. Hence, we will save the
% ZCA whitening and mean image matrices together with the learned features
% later on. % Subtract mean patch (hence zeroing the mean of the patches)
meanPatch = mean(patches, ); %为什么是对每行求平均,以前是对每列即每个样本求平均呀?因为以前是灰度图,现在是彩色图,如果现在对每列平均就是对三个通道求平均,这肯定不行
patches = bsxfun(@minus, patches, meanPatch); % Apply ZCA whitening
sigma = patches * patches' / numPatches; %协方差矩阵
[u, s, v] = svd(sigma);
ZCAWhite = u * diag( ./ sqrt(diag(s) + epsilon)) * u';
patches = ZCAWhite * patches; figure;
displayColorNetwork(patches(:, :)); %% STEP 2c: Learn features
% You will now use your sparse autoencoder (with linear decoder) to learn
% features on the preprocessed patches. This should take around minutes. theta = initializeParameters(hiddenSize, visibleSize); % Use minFunc to minimize the function
addpath minFunc/ options = struct;
options.Method = 'lbfgs';
options.maxIter = ;
options.display = 'on'; [optTheta, cost] = minFunc( @(p) sparseAutoencoderLinearCost(p, ...
visibleSize, hiddenSize, ...
lambda, sparsityParam, ...
beta, patches), ...
theta, options); % Save the learned features and the preprocessing matrices for use in
% the later exercise on convolution and pooling
fprintf('Saving learned features and preprocessing matrices...\n');
save('STL10Features.mat', 'optTheta', 'ZCAWhite', 'meanPatch');
fprintf('Saved\n'); %% STEP 2d: Visualize learned features W = reshape(optTheta(:visibleSize * hiddenSize), hiddenSize, visibleSize);
b = optTheta(*hiddenSize*visibleSize+:*hiddenSize*visibleSize+hiddenSize);
figure;
displayColorNetwork( (W*ZCAWhite)');

sparseAutoencoderLinearCost.m

function [cost,grad,features] = sparseAutoencoderLinearCost(theta, visibleSize, hiddenSize, ...
lambda, sparsityParam, beta, data)
%计算线性解码器代价函数及其梯度
% visibleSize:输入层神经单元节点数
% hiddenSize:隐藏层神经单元节点数
% lambda: 权重衰减系数
% sparsityParam: 稀疏性参数
% beta: 稀疏惩罚项的权重
% data: 训练集
% theta:参数向量,包含W1、W2、b1、b2
% -------------------- YOUR CODE HERE --------------------
% Instructions:
% Copy sparseAutoencoderCost in sparseAutoencoderCost.m from your
% earlier exercise onto this file, renaming the function to
% sparseAutoencoderLinearCost, and changing the autoencoder to use a
% linear decoder.
% -------------------- YOUR CODE HERE --------------------
% The input theta is a vector because minFunc only deal with vectors. In
% this step, we will convert theta to matrix format such that they follow
% the notation in the lecture notes.
W1 = reshape(theta(:hiddenSize*visibleSize), hiddenSize, visibleSize);
W2 = reshape(theta(hiddenSize*visibleSize+:*hiddenSize*visibleSize), visibleSize, hiddenSize);
b1 = theta(*hiddenSize*visibleSize+:*hiddenSize*visibleSize+hiddenSize);
b2 = theta(*hiddenSize*visibleSize+hiddenSize+:end); % Loss and gradient variables (your code needs to compute these values)
m = size(data, ); % 样本数量 %% ---------- YOUR CODE HERE --------------------------------------
% Instructions: Compute the loss for the Sparse Autoencoder and gradients
% W1grad, W2grad, b1grad, b2grad
%
% Hint: ) data(:,i) is the i-th example
% ) your computation of loss and gradients should match the size
% above for loss, W1grad, W2grad, b1grad, b2grad % z2 = W1 * x + b1
% a2 = f(z2)
% z3 = W2 * a2 + b2
% h_Wb = a3 = f(z3) z2 = W1 * data + repmat(b1, [, m]);
a2 = sigmoid(z2);
z3 = W2 * a2 + repmat(b2, [, m]);
a3 = z3; rhohats = mean(a2,);
rho = sparsityParam;
KLsum = sum(rho * log(rho ./ rhohats) + (-rho) * log((-rho) ./ (-rhohats))); squares = (a3 - data).^;
squared_err_J = (/) * (/m) * sum(squares(:)); %均方差项
weight_decay_J = (lambda/) * (sum(W1(:).^) + sum(W2(:).^));%权重衰减项
sparsity_J = beta * KLsum; %惩罚项 cost = squared_err_J + weight_decay_J + sparsity_J;%损失函数值 % delta3 = -(data - a3) .* fprime(z3);
% but fprime(z3) = a3 * (-a3)
delta3 = -(data - a3);
beta_term = beta * (- rho ./ rhohats + (-rho) ./ (-rhohats));
delta2 = ((W2' * delta3) + repmat(beta_term, [1,m]) ) .* a2 .* (1-a2); W2grad = (/m) * delta3 * a2' + lambda * W2; % W2梯度
b2grad = (/m) * sum(delta3, ); % b2梯度
W1grad = (/m) * delta2 * data' + lambda * W1; % W1梯度
b1grad = (/m) * sum(delta2, ); % b1梯度 %-------------------------------------------------------------------
% Convert weights and bias gradients to a compressed form
% This step will concatenate and flatten all your gradients to a vector
% which can be used in the optimization method.
grad = [W1grad(:) ; W2grad(:) ; b1grad(:) ; b2grad(:)]; end
%-------------------------------------------------------------------
% We are giving you the sigmoid function, you may find this function
% useful in your computation of the loss and the gradients.
function sigm = sigmoid(x) sigm = ./ ( + exp(-x));
end

displayColorNetwork.m

function displayColorNetwork(A)

% display receptive field(s) or basis vector(s) for image patches
%
% A the basis, with patches as column vectors % In case the midpoint is not set at , we shift it dynamically
if min(A(:)) >=
A = A - mean(A(:)); % 0均值化
end cols = round(sqrt(size(A, )));% 每行大图像中小图像块的个数 channel_size = size(A,) / ;
dim = sqrt(channel_size); % 小图像块内每行或列像素点个数
dimp = dim+;
rows = ceil(size(A,)/cols); % 每列大图像中小图像块的个数
B = A(:channel_size,:); % R通道像素值
C = A(channel_size+:channel_size*,:); % G通道像素值
D = A(*channel_size+:channel_size*,:); % B通道像素值
B=B./(ones(size(B,),)*max(abs(B)));% 归一化
C=C./(ones(size(C,),)*max(abs(C)));
D=D./(ones(size(D,),)*max(abs(D)));
% Initialization of the image
I = ones(dim*rows+rows-,dim*cols+cols-,); %Transfer features to this image matrix
for i=:rows-
for j=:cols- if i*cols+j+ > size(B, )
break
end % This sets the patch
I(i*dimp+:i*dimp+dim,j*dimp+:j*dimp+dim,) = ...
reshape(B(:,i*cols+j+),[dim dim]);
I(i*dimp+:i*dimp+dim,j*dimp+:j*dimp+dim,) = ...
reshape(C(:,i*cols+j+),[dim dim]);
I(i*dimp+:i*dimp+dim,j*dimp+:j*dimp+dim,) = ...
reshape(D(:,i*cols+j+),[dim dim]); end
end I = I + ; % 使I的范围从[-,]变为[,]
I = I / ; % 使I的范围从[,]变为[, ]
imagesc(I);
axis equal % 等比坐标轴:设置屏幕高宽比,使得每个坐标轴的具有均匀的刻度间隔
axis off % 关闭所有的坐标轴标签、刻度、背景 end

参考资料

线性解码器

http://www.cnblogs.com/tornadomeet/archive/2013/04/08/3007435.html

http://www.cnblogs.com/tornadomeet/archive/2013/03/25/2980766.html

Deep Learning 9_深度学习UFLDL教程:linear decoder_exercise(斯坦福大学深度学习教程)的更多相关文章

  1. Deep Learning 13_深度学习UFLDL教程:Independent Component Analysis_Exercise(斯坦福大学深度学习教程)

    前言 理论知识:UFLDL教程.Deep learning:三十三(ICA模型).Deep learning:三十九(ICA模型练习) 实验环境:win7, matlab2015b,16G内存,2T机 ...

  2. Deep Learning 11_深度学习UFLDL教程:数据预处理(斯坦福大学深度学习教程)

    理论知识:UFLDL数据预处理和http://www.cnblogs.com/tornadomeet/archive/2013/04/20/3033149.html 数据预处理是深度学习中非常重要的一 ...

  3. Deep Learning 10_深度学习UFLDL教程:Convolution and Pooling_exercise(斯坦福大学深度学习教程)

    前言 理论知识:UFLDL教程和http://www.cnblogs.com/tornadomeet/archive/2013/04/09/3009830.html 实验环境:win7, matlab ...

  4. Deep Learning 19_深度学习UFLDL教程:Convolutional Neural Network_Exercise(斯坦福大学深度学习教程)

    理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep lear ...

  5. Deep Learning 12_深度学习UFLDL教程:Sparse Coding_exercise(斯坦福大学深度学习教程)

    前言 理论知识:UFLDL教程.Deep learning:二十六(Sparse coding简单理解).Deep learning:二十七(Sparse coding中关于矩阵的范数求导).Deep ...

  6. Deep Learning 8_深度学习UFLDL教程:Stacked Autocoders and Implement deep networks for digit classification_Exercise(斯坦福大学深度学习教程)

    前言 1.理论知识:UFLDL教程.Deep learning:十六(deep networks) 2.实验环境:win7, matlab2015b,16G内存,2T硬盘 3.实验内容:Exercis ...

  7. Deep Learning 1_深度学习UFLDL教程:Sparse Autoencoder练习(斯坦福大学深度学习教程)

    1前言 本人写技术博客的目的,其实是感觉好多东西,很长一段时间不动就会忘记了,为了加深学习记忆以及方便以后可能忘记后能很快回忆起自己曾经学过的东西. 首先,在网上找了一些资料,看见介绍说UFLDL很不 ...

  8. Deep learning for visual understanding: A review 视觉理解中的深度学习:回顾 之一

    Deep learning for visual understanding: A review 视觉理解中的深度学习:回顾 ABSTRACT: Deep learning algorithms ar ...

  9. 论文阅读:Face Recognition: From Traditional to Deep Learning Methods 《人脸识别综述:从传统方法到深度学习》

     论文阅读:Face Recognition: From Traditional to Deep Learning Methods  <人脸识别综述:从传统方法到深度学习>     一.引 ...

随机推荐

  1. 在Win7系统中搭建Web服务器

    局 域网Web服务器的主要功能是实现资源共享,同时借助于局域网服务器访问页面可有效的实现信息的同步.利用Web服务器,我们随时随地都可以将自己的信息 上传到服务器端,让其它关注你的用户能在第一时间内了 ...

  2. Python开发【第三章】:Python函数介绍

    一. 函数介绍 1.函数是什么? 在学习函数之前,一直遵循面向过程编程,即根据业务逻辑从上到下实现功能,其往往用一长段代码来实现指定功能,开发过程中最常见的操作就是粘贴复制,也就是将之前实现的代码块复 ...

  3. 白话学习MVC(九)View的呈现一

    一.概述 本节来看一下ASP.NET MVC[View的呈现]的内容,View的呈现是在Action执行之后进行,Action的执行生成一个ActionResult,[View的呈现]的功能就是:通过 ...

  4. 对于字符串拼接,string.format、stringbuilder、+=

    sring拼接经常会用到,拼接时候使用的方法,每个人的又不一样,有的是不知道哪个效率高,也有一些是为了方便不差那么一点时间! 今天百度查了查他们的区别! += 是效率最低的一个,尽量避免使用,当然,不 ...

  5. 解决SQLSERVER在还原数据时出现的“FILESTREAM功能被禁用”问题

    解决SQLSERVER在还原数据时出现的“FILESTREAM功能被禁用”问题 今天由于测试需要,在网上下载了Adventureworks2008实例数据库的BAK文件,进行还原时出现了这样的错误“F ...

  6. 笔记本自带 WiFi 功能

    在寝室,动网速基本崩溃.平时打电话什么的都得到阳台,有时候还听不清声音.对于学校的环境,我不说什么了. 笔记本可以上网,那就要满足手机等移动电子设备上网的上网需求. WiFi 热点就显得尤为重要了. ...

  7. Qt信号与槽应用实例一

    ..... connect(m_pGlobelWidget,signal(globeControlClick(object,object)),this,slot(globeControlClick(o ...

  8. NS_ENUM vs. NS_OPTIONS

    NS_ENUM用于定义普通枚举值,NS_OPTIONS用于定义位移相关操作的枚举值: typedef NS_ENUM(NSUInteger, EOCConnectionState) { EOCConn ...

  9. python 笔记

    第一周2016/9/11   Python 2.0和3.0的区别 3.0 的模块名改了和之前的2.0 不一样 #!/usr/bin/env python # -*- coding:utf-8 -*- ...

  10. MySQL如何关联查询

    总的来说,mysql认为任何一个查询都是一次关联,并不仅仅是一个查询需要用到两个表匹配才叫关联,所以,在mysql中,每一个查询,每一个片段(包括子查询,甚至单表select)都可能是关联.所以,理解 ...