考虑对于$n-1$个数$a_{i}$,函数$f(x)=\frac{\sum_{i=1}^{n-1}(x-a_{i})^{2}}{n-1}$的最小值恰在$x=\frac{\sum_{i=1}^{n-1}a_{i}}{n-1}$取到(根据二次函数显然),因此题意可以理解为任选实数$b$并最小化$\frac{\sum_{i=1}^{n-1}(b-a_{i})^{2}}{n-1}$(本来要求$b$为平均值)

可以暴力枚举$b$并将边权从$d$变为$(b-d)^{2}$求最小生成树,但由于$b$为实数,并不能直接枚举

(为了方便,以下约定两条边边权若相同,编号小的更小)

对于最小生成树而言,所选的边事实上仅取决于边的大小关系,考虑两条边$i$和$j$(其中$i<j$)满足$i$在$j$前面当且仅当$X\le \lfloor\frac{w_{i}+w_{j}}{2}\rfloor$,以此法即产生了$o(n^{4})$个区间,每一个区间内大小关系都相同

(每一段都是左端点为圆括号,右端点为中括号)

对于每一段,以$b$作为参数来表示边权,比较时使用区间内任意数字即可,最后即求一个二次函数区间(其实也可以忽略区间限制)最小值,即可做到$o(n^{6})$的复杂度,可以通过

(以下可能有一些口胡)

更进一步的,考虑每一次权值变化即将两条边优先级交换,且交换的两边优先级相邻(不妨假设为两边为$i$和$j$,其中交换前$i$优先级较大),此时不难证明——

如果修改最小生成树,则必然是$i$本来在最小生成树中被删除,$j$本来不在最小生成树中被加入(其余边不修改)

(证明考虑kruskal贪心的过程并分类讨论即可)

因此只需要判定能否替换即可,用按秩合并并查集维护,复杂度为$o(n^{4}\log n)$

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 25
4 #define sqr(k) (k)*(k)
5 struct fun{
6 double a,b,c,val;
7 fun(){
8 a=b=c=val=0;
9 }
10 fun(double aa,double bb,double cc,double vall){
11 a=aa,b=bb,c=cc,val=vall;
12 }
13 bool operator < (const fun &k)const{
14 return val<k.val;
15 }
16 fun operator + (const fun &k)const{
17 return fun(a+k.a,b+k.b,c+k.c,0);
18 }
19 double mn(){
20 return c-sqr(b)/(4*a);
21 }
22 }D[N],w[N][N];
23 vector<double>v;
24 int n,vis[N];
25 double ans,d[N][N];
26 fun calc(){
27 fun ans;
28 D[0]=fun();
29 for(int i=1;i<n;i++)D[i]=fun(0,0,0,1e15);
30 memset(vis,0,sizeof(vis));
31 for(int i=0;i<n;i++){
32 int k=-1;
33 for(int j=0;j<n;j++)
34 if ((!vis[j])&&((k<0)||(D[j]<D[k])))k=j;
35 vis[k]=1;
36 ans=ans+D[k];
37 for(int j=0;j<n;j++)D[j]=min(D[j],w[k][j]);
38 }
39 return ans;
40 }
41 class Egalitarianism2{
42 public:
43 double minStdev(vector<int>x,vector<int>y){
44 n=x.size();
45 for(int i=0;i<n;i++)
46 for(int j=0;j<n;j++)d[i][j]=sqrt(1LL*sqr(x[i]-x[j])+1LL*sqr(y[i]-y[j]));
47 for(int i=0;i<n;i++)
48 for(int j=i+1;j<n;j++)
49 for(int ii=i;ii<n;ii++)
50 for(int jj=ii+1;jj<n;jj++)
51 if ((i<ii)||(j<jj))v.push_back((d[i][j]+d[ii][jj])/2);
52 sort(v.begin(),v.end());
53 double lst=0;
54 ans=1e15;
55 for(int i=0;i<v.size();i++)
56 if ((!i)||(v[i]!=v[i-1])){
57 for(int j=0;j<n;j++)
58 for(int k=0;k<n;k++)w[j][k]=fun(1,-2*d[j][k],sqr(d[j][k]),sqr(v[i]-d[j][k]));
59 ans=min(ans,calc().mn()/(n-1));
60 lst=v[i];
61 }
62 return sqrt(ans);
63 }
64 };

[tc13008]Egalitarianism2的更多相关文章

随机推荐

  1. Windows下node-gyp查找VS安装路径简单解析

    node-gyp的作用我已经不想赘述了,这里给一个我之前文章的链接:cnblogs看这里,知乎看这里.本文主要从源码入手,介绍node-gyp查找VisualStudio的过程 为了方便我们研究nod ...

  2. 透过 Chrome 深入理解浏览器导航过程

    网络的导航,是从输入 url 到最终获取到文件的过程.其中牵扯到浏览器架构.操作系统.网络等一系列知识.本文将从各个角度详细论述这一过程,涉及广度与深度.如果您是已经有一定基础的同学,那么本文可以快速 ...

  3. 云原生的弹性 AI 训练系列之三:借助弹性伸缩的 Jupyter Notebook,大幅提高 GPU 利用率

    Jupyter Notebooks 在 Kubernetes 上部署往往需要绑定一张 GPU,而大多数时候 GPU 并没有被使用,因此利用率低下.为了解决这一问题,我们开源了 elastic-jupy ...

  4. PTA数据结构 习题2.1 简单计算器 (20分)

    习题2.1 简单计算器 (20分) 模拟简单运算器的工作.假设计算器只能进行加减乘除运算,运算数和结果都是整数,四种运算符的优先级相同,按从左到右的顺序计算. 输入格式: 输入在一行中给出一个四则运算 ...

  5. Python中pymongo find 遍历数据导致timeout

    背景 在读取大约200W左右的数据的时候采用游标形式进行数据遍历时,超过10分钟就报错 timeout 原因 pymongo游标会在10分钟之后被关闭 解决方案 db.find({}, no_curs ...

  6. 你对微信小程序的理解?优缺点?

    一.是什么 2017年,微信正式推出了小程序,允许外部开发者在微信内部运行自己的代码,开展业务 截至目前,小程序已经成为国内前端的一个重要业务,跟 Web 和手机 App 有着同等的重要性 小程序是一 ...

  7. JavaCPP快速入门(官方demo增强版)

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  8. javascript-jquery介绍

    jquery优势 1.轻量级 2.强大的选择器 3.出色的DOM封装 4.可靠的事件处理机制 5.完善的Ajax 6.不污染顶级变量 7.出色的浏览器兼容 8.链式操作方式 9.隐式迭代 10.行为层 ...

  9. FastAPI 学习之路(四十六)WebSockets(二)

    上一篇文章,我们分享了WebSockets一些入门的,我们这节课,在原来的基础上,对于讲解的进行一个演示.我们最后分享了依赖token等.首先我们对上次的代码进行调整. 我们之前分享FastAPI 学 ...

  10. 【Java虚拟机3】类加载器

    前言 Java虚拟机设计团队有意把类加载阶段中的"通过一个类的全限定名来获取描述该类的二进制字节流"这个动作放到Java虚拟机外部去实现,以便让应用程序自己决定如何去获取所需的类. ...