[bzoj1188]分裂游戏
容易发现所有豆子相互独立,只需要考虑每一个豆子的sg函数并异或起来即可,sg函数从后往前暴力即可
1 #include<bits/stdc++.h>
2 using namespace std;
3 int t,n,x,y,z,s,ans,a[105],sg[105],vis[105];
4 int main(){
5 scanf("%d",&t);
6 while (t--){
7 scanf("%d",&n);
8 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
9 memset(sg,0,sizeof(sg));
10 x=y=z=s=ans=0;
11 for(int i=n;i;i--){
12 memset(vis,0,sizeof(vis));
13 for(int j=i+1;j<=n;j++)
14 for(int k=j;k<=n;k++)vis[sg[j]^sg[k]]=1;
15 while (vis[sg[i]])sg[i]++;
16 if (a[i]&1)s^=sg[i];
17 }
18 for(int i=1;i<=n;i++)
19 if (a[i])
20 for(int j=i+1;j<=n;j++)
21 for(int k=j;k<=n;k++)
22 if ((s==(sg[i]^sg[j]^sg[k]))&&(!ans++))printf("%d %d %d\n",i-1,j-1,k-1);
23 if (!ans)printf("-1 -1 -1\n");
24 printf("%d\n",ans);
25 }
26 }
[bzoj1188]分裂游戏的更多相关文章
- 【BZOJ1188】分裂游戏(博弈论)
[BZOJ1188]分裂游戏(博弈论) 题面 BZOJ 洛谷 题解 这道题目比较神仙. 首先观察结束状态,即\(P\)状态,此时必定是所有的豆子都在最后一个瓶子中. 发现每次的转移一定是拿出一棵豆子, ...
- [bzoj1188][HNOI2007]分裂游戏_博弈论
分裂游戏 bzoj-1188 HNOI-2007 题目大意:题目链接. 注释:略. 想法: 我们发现如果一个瓶子内的小球个数是奇数才是有效的. 所以我们就可以将问题变成了一个瓶子里最多只有一个球球. ...
- bzoj1188 [HNOI2007]分裂游戏 博弈论 sg函数的应用
1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 973 Solved: 599[Submit][Status ...
- bzoj 1188 [HNOI2007]分裂游戏(SG函数,博弈)
1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 733 Solved: 451[Submit][Status ...
- bzoj 1188 [HNOI2007]分裂游戏 SG函数 SG定理
[HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1394 Solved: 847[Submit][Status][Dis ...
- 洛谷 P2041 分裂游戏 解题报告
P2041 分裂游戏 题目描述 有一个无限大的棋盘,棋盘左下角有一个大小为 n 的阶梯形区域,其中最左下角的那个格子里有一枚棋子.你每次可以把一枚棋子"分裂"成两枚棋子,分别放在原 ...
- P2041 分裂游戏
P2041 分裂游戏 手推$n=3$是无解的,推断$n>=3$是无解的 证明略,这是道结论题. #include<iostream> #include<cstdio> # ...
- bzoj1188: [HNOI2007]分裂游戏
Description 聪聪和睿睿最近迷上了一款叫做分裂的游戏. 该游戏的规则试: 共有 n 个瓶子, 标号为 0,1,2.....n-1, 第 i 个瓶子中装有 p[i]颗巧克力豆,两个人轮流取豆子 ...
- BZOJ1188:[HNOI2007]分裂游戏(博弈论)
Description 聪聪和睿睿最近迷上了一款叫做分裂的游戏.该游戏的规则试:共有n个瓶子,标号为0,1,2.....n-1,第i个瓶子中装有p[i]颗巧克力豆,两个人轮流取豆子,每一轮每人选择3个 ...
随机推荐
- Serverless 在 SaaS 领域的最佳实践
作者 | 计缘 来源 | Serverless 公众号 随着互联网人口红利逐渐减弱,基于流量的增长已经放缓,互联网行业迫切需要找到一片足以承载自身持续增长的新蓝海,产业互联网正是这一宏大背景下的新趋势 ...
- 题解 CF833D Red-Black Cobweb
题目传送门 题目大意 给出一个 \(n\) 个点的树,每条边有边权和颜色 \(0,1\) ,定义一条链合法当且仅当 \(0,1\) 颜色的边数之比小于等于 \(2\) ,求所有合法的链的边权之积的积. ...
- dubbo-admin的使用
目录 了解 dubbo-admin 下载 dubbo-admin 使用 dubbo-admin 1.dubbo-admin是什么 dubbo-admin是一个监控程序,可以通过web很方便的管理监控众 ...
- Jenkins 进阶篇 - 单元测试覆盖率
我们做项目开发,肯定免不了要写单元测试,不管是 Java 项目.Python 项目.PHP 项目,甚至是 nodejs 项目,都应该要写单元测试,本小节就来介绍单元测试的覆盖率报告输出和展示,在后面的 ...
- easyDialog 简单、实用的弹出层组件
easyDialog 简单.实用的弹出层组件 使用背景 在完成导师需求时,导师要求寻找比一个layer弹出层组件体积小得多的.最好能嵌入在进HTML代码中而非src引用的弹出层组件,在这个需求下,我找 ...
- cookie和session和localStorage的区别
这三个都是保存在浏览器端,而且都是同源的. Session仅在当前浏览器窗口关闭有效,不能持久保存 Localstorage始终有效,窗口或浏览器关闭也一直保存,因此用作持久数据 Cookie只在设置 ...
- DevOps 时代的高效测试之路
10 月 22 日,2021 届 DevOps 国际峰会在北京顺利召开,来自国内外的顶级技术专家共同畅谈 DevOps 体系与方法.过程与实践.工具与技术.CODING 测试及研发流程管理产品总监程胜 ...
- Coursera Deep Learning笔记 深度卷积网络
参考 1. Why look at case studies 介绍几个典型的CNN案例: LeNet-5 AlexNet VGG Residual Network(ResNet): 特点是可以构建很深 ...
- [ NOIP2013 D2-T3 ] 华容道
NOIP2013 华容道 图论好题. 介于网上全是些令蒟蒻头昏的题解和排版一塌糊涂以及过于详细的题解...蒟蒻记录一下.. 显然需要将白格移动到 \(s\) 相邻格,然后交换 \(s\) 与白格,再将 ...
- Noip模拟10 2021.6.27
T1 入阵曲 好了,又一个考试败笔题. 也就是在那个时候,小 F 学会了矩阵乘法.让两个矩阵乘几次就能算出斐波那契数, 真是奇妙无比呢. 不过, 小 F 现在可不想手算矩阵乘法--他觉得好麻烦.取而代 ...