算法新手,刷力扣遇到这题,搞了半天终于搞懂了,来这记录一下,欢迎大家交流指点。

题目描述:

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

解法一:暴力递归

  不解释,先暴力搞一下。(时间复杂度O(n^3),不行)

 1 class Solution {
2 public:
3 int l(vector<int>& nums) { // 返回以nums[0]开头的最长递增序列长度
4 if (nums.size() < 2)
5 return nums.size();
6 int max_len = 1;
7 for (int i = 1; i < nums.size(); ++ i)
8 if (nums[i] > nums[0]) {
9 vector<int> t{nums.begin() + i, nums.end()};
10 max_len = max(max_len, l(t) + 1);
11 }
12 return max_len;
13 }
14 int lengthOfLIS(vector<int>& nums) { // 所有序列遍历一遍
15 int max_len = 1;
16 for (i = 0; i < nums.size(); ++ i) {
17 vector<int> t(nums.begin() + i, nums.end());
18 max_len = max(max_len, l(t));
19 }
20 return max_len;
21 }
22 };

  小优化一下,记忆化搜索。(还是不行,时间复杂度还是太高)

 1 class Solution {
2 public:
3 int l(unordered_map<int, int>& map, vector<int>& nums) {
4 if (nums.size() < 2)
5 return nums.size();
6 if (map.find(nums[0]) != map.end()) // 如果已经知道了以某个数开头的元素的最长序列数,直接返回
7 return map[nums[0]];
8 int max_len = 1;
9 for (int i = 1; i < nums.size(); ++ i)
10 if (nums[i] > nums[0]) {
11 vector<int> t{nums.begin() + i, nums.end()};
12 max_len = max(max_len, l(map, t) + 1);
13 }
14 map[nums[0]] = max_len; // 记录以某个数开头的最长递增序列长度
15 return max_len;
16 }
17 int lengthOfLIS(vector<int>& nums) {
18 int max_len = 1;
19 unordered_map<int, int> map; // 哈希表,<开头的数,最长递归序列长度>
20 for (int i = 0; i < nums.size(); ++ i) {
21 vector<int> t(nums.begin() + i, nums.end());
22 max_len = max(max_len, l(map, t));
23 }
24 return max_len;
25 }
26 };

解法二:动态规划

  看来暴力是不行滴,还得动态规划。(时间复杂度O(n^2),AC了)

 1 class Solution {
2 public:
3 int lengthOfLIS(vector<int>& nums) {
4 vector<int> dp(nums.size(), 0); // 记录以nums[i]为结尾的最长递增子序列长度
5 for (int i = 1; i < nums.size(); ++ i)
6 for (int j = 0; j < i; ++ j) // 找一个最长的递增序列,接到它后面
7 if (nums[j] < nums[i])
8 dp[i] = max(dp[i], dp[j] + 1);
9 return *max_element(dp.begin(), dp.end()) + 1;
10 }
11 };

解法三:动态规划 + 二分查找

  动态规划方法是可行的,但是O(n^2)的时间复杂度还是较高,使用二分查找方法可以进一步优化。(时间复杂度O(nlogn),大提升)

 1 class Solution {
2 public:
3 int lengthOfLIS(vector<int>& nums) {
4 vector<int> dp(1, *nums.begin()); // 维护一个数组,用来存放最长的递增子序列
5 int left = 0, right = 0, mid = 0;
6 for (int i = 1; i < nums.size(); ++ i) { // 遍历一遍nums寻找每个元素在最长子序列中的插入位置
7 if (nums[i] > *(dp.end() - 1)) { // 如果当前元素比序列中所有元素都大,直接插到末尾
8 dp.push_back(nums[i]);
9 continue;
10 }
11 left = -1;              // 否则的话,替换掉序列中第一个大于等于它的元素,这样可以保证得到最长的递增序列
12 right = dp.size();
13 while (left + 1 != right) {
14 mid = (left + right) / 2;
15 if (dp[mid] >= nums[i])
16 right = mid;
17 else
18 left = mid;
19 }
20 dp[right] = nums[i];
21 }
22 return dp.size();
23 }
24 };

【LeetCode】300.最长递增子序列——暴力递归(O(n^3)),动态规划(O(n^2)),动态规划+二分法(O(nlogn))的更多相关文章

  1. Leetcode 673.最长递增子序列的个数

    最长递增子序列的个数 给定一个未排序的整数数组,找到最长递增子序列的个数. 示例 1: 输入: [1,3,5,4,7] 输出: 2 解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[ ...

  2. Leetcode 300.最长上升子序列

    最长上升子序列 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101],它的 ...

  3. [LeetCode] 300. 最长上升子序列 ☆☆☆(动态规划 二分)

    https://leetcode-cn.com/problems/longest-increasing-subsequence/solution/dong-tai-gui-hua-she-ji-fan ...

  4. Java实现 LeetCode 673 最长递增子序列的个数(递推)

    673. 最长递增子序列的个数 给定一个未排序的整数数组,找到最长递增子序列的个数. 示例 1: 输入: [1,3,5,4,7] 输出: 2 解释: 有两个最长递增子序列,分别是 [1, 3, 4, ...

  5. Java实现 LeetCode 300 最长上升子序列

    300. 最长上升子序列 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,10 ...

  6. leetcode 300最长上升子序列

    用递归DFS遍历所有组合肯定积分会超时,原因是有很多重复的操作,可以想象每次回溯后肯定会有重复操作.所以改用动态规划.建立一个vector<int>memo,初始化为1,memo[i]表示 ...

  7. Leetcode——300. 最长上升子序列

    题目描述:题目链接 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101], ...

  8. LeetCode 300. 最长上升子序列(Longest Increasing Subsequence)

    题目描述 给出一个无序的整形数组,找到最长上升子序列的长度. 例如, 给出 [10, 9, 2, 5, 3, 7, 101, 18], 最长的上升子序列是 [2, 3, 7, 101],因此它的长度是 ...

  9. LeetCode 300——最长上升子序列

    1. 题目 2. 解答 2.1. 动态规划 我们定义状态 state[i] 表示以 nums[i] 为结尾元素的最长上升子序列的长度,那么状态转移方程为: \[state[i] = max(state ...

随机推荐

  1. Learning ROS: Aboat URDF (Unified Robot Description Format)

    Building a Visual Robot Model with URDF from Scratch roscore &# With $(find urdf_tutorial), this ...

  2. Docker | 入门 & 基础操作

    Dcoker 入门 确保docker 已经安装好了,如没有装好的可以参考:Docker | 安装 运行第一个容器 docker run -it ubuntu /bin/bash docker run ...

  3. Junit5快速入门指南-4

    Junit5套件测试 @RunWith(JUnitPlatform.class) 执行套件 @SelectPackages({"packageA","packageB&q ...

  4. Operator 示例:使用 Redis 部署 PHP 留言板应用程序

    「Kubernetes 官方示例:使用 Redis 部署 PHP 留言板应用程序」Operator 化. 源码仓库:https://github.com/jxlwqq/guestbook-operat ...

  5. Nginx优化与防盗链

    目录: 一.隐藏版本号 二.修改用户与组 三.缓存时间 四.日志切割 五.连接超时 六.更改进程数 七.配置网页压缩 一.隐藏版本号 可以使用 Fiddler 工具抓取数据包,查看 Nginx版本 也 ...

  6. Spring Cloud Gateway 学习+实践

    官网上给出的Spring Cloud Gateway特性如下图所示: 翻译过来就是: 基于 Spring Framework 5 ,Project Reactor 以及 Spring Boot 2.0 ...

  7. ASP.NET Core Web API 教程 - Project Configuration

    ASP.NET Core Web API 教程 本系列文章主要参考了<Ultimate ASP.NET Core 3 Web API>一书,我对原文进行了翻译,同时适当删减.修改了一部分内 ...

  8. File Upload(文件上传)

    一句话木马 <?php @eval($_POST['key']); ?> /*eval(phpcode) eval() 函数把字符串按照 PHP 代码来计算. 该字符串必须是合法的 PHP ...

  9. eclipse中的一些快捷键

    1.内容提示 Alt+/ 2.快速修复 ctrl+/ 3.导包 ctrl+shift+o 4.格式代码块 ctrl+shift+o 5.向前向后 Alt+方向键 6.添加注释 ctrl+shift+/ ...

  10. java web 项目中web.xml 详解

    web.xml详述: web.xml 是每个Java web 项目的必备文件,又叫做部署描述符,Servlet规范中定义的,是web应用的配置文件. 概念: .部署描述符文件就像所有XML文件一样,必 ...