听到谓词下推这个词,是不是觉得很高大上,找点资料看了半天才能搞懂概念和思想,借这个机会好好学习一下吧。

引用范欣欣大佬的博客中写道,以前经常满大街听到谓词下推,然而对谓词下推却总感觉懵懵懂懂,并不明白的很真切。这里拿出来和大家交流交流。个人认为谓词下推有两个层面的理解:

  • 其一是逻辑执行计划优化层面的说法,比如SQL语句:select * from order ,item where item.id = order.item_id and item.category = ‘book’,正常情况语法解析之后应该是先执行Join操作,再执行Filter操作。通过谓词下推,可以将Filter操作下推到Join操作之前执行。即将where item.category = ‘book’下推到 item.id = order.item_id之前先行执行。

  • 其二是真正实现层面的说法,谓词下推是将过滤条件从计算进程下推到存储进程先行执行,注意这里有两种类型进程:计算进程以及存储进程。计算与存储分离思想,这在大数据领域相当常见,比如最常见的计算进程有SparkSQL、Hive、impala等,负责SQL解析优化、数据计算聚合等,存储进程有HDFS(DataNode)、Kudu、HBase,负责数据存储。正常情况下应该是将所有数据从存储进程加载到计算进程,再进行过滤计算。谓词下推是说将一些过滤条件下推到存储进程,直接让存储进程将数据过滤掉。这样的好处显而易见,过滤的越早,数据量越少,序列化开销、网络开销、计算开销这一系列都会减少,性能自然会提高。

谓词下推 Predicate Pushdown(PPD):简而言之,就是在不影响结果的情况下,尽量将过滤条件提前执行。谓词下推后,过滤条件在map端执行,减少了map端的输出,降低了数据在集群上传输的量,节约了集群的资源,也提升了任务的性能。

PPD 配置

PPD控制参数:hive.optimize.ppd,默认值:true

PPD规则:

Preserved Row tables Null Supplying tables
Join Predicate Case J1: Not Pushed Case J2: Pushed
Where Predicate Case W1: Pushed Case W2: Not Pushed

Push:谓词下推,可以理解为被优化

Not Push:谓词没有下推,可以理解为没有被优化

实验

实验结果列表形式:

Pushed or Not SQL
Pushed select ename,dept_name from E join D on ( E.dept_id = D.dept_id and E.eid='HZ001');
Pushed select ename,dept_name from E join D on E.dept_id = D.dept_id where E.eid='HZ001';
Pushed select ename,dept_name from E join D on ( E.dept_id = D.dept_id and D.dept_id='D001');
Pushed select ename,dept_name from E join D on E.dept_id = D.dept_id where D.dept_id='D001';
Not Pushed select ename,dept_name from E left outer join D on ( E.dept_id = D.dept_id and E.eid='HZ001');
Pushed select ename,dept_name from E left outer join D on E.dept_id = D.dept_id where E.eid='HZ001';
Pushed select ename,dept_name from E left outer join D on ( E.dept_id = D.dept_id and D.dept_id='D001');
Not Pushed select ename,dept_name from E left outer join D on E.dept_id = D.dept_id where D.dept_id='D001';
Pushed select ename,dept_name from E right outer join D on ( E.dept_id = D.dept_id and E.eid='HZ001');
Not Pushed select ename,dept_name from E right outer join D on E.dept_id = D.dept_id where E.eid='HZ001';
Not Pushed select ename,dept_name from E right outer join D on ( E.dept_id = D.dept_id and D.dept_id='D001');
Pushed select ename,dept_name from E right outer join D on E.dept_id = D.dept_id where D.dept_id='D001';
Not Pushed select ename,dept_name from E full outer join D on ( E.dept_id = D.dept_id and E.eid='HZ001');
Not Pushed select ename,dept_name from E full outer join D on E.dept_id = D.dept_id where E.eid='HZ001';
Not Pushed select ename,dept_name from E full outer join D on ( E.dept_id = D.dept_id and D.dept_id='D001');
Not Pushed select ename,dept_name from E full outer join D on E.dept_id = D.dept_id where D.dept_id='D001';

实验结果表格形式:

此表实际上就是上述PPD规则表。

结论

1、对于Join(Inner Join)、Full outer Join,条件写在on后面,还是where后面,性能上面没有区别;

2、对于Left outer Join ,右侧的表写在on后面、左侧的表写在where后面,性能上有提高;

3、对于Right outer Join,左侧的表写在on后面、右侧的表写在where后面,性能上有提高;

4、当条件分散在两个表时,谓词下推可按上述结论2和3自由组合,情况如下:

SQL 过滤时机
select ename,dept_name from E left outer join D on ( E.dept_id = D.dept_id and E.eid='HZ001' and D.dept_id = 'D001'); dept_id在map端过滤,eid在reduce端过滤
select ename,dept_name from E left outer join D on ( E.dept_id = D.dept_id and D.dept_id = 'D001') where E.eid='HZ001'; dept_id,eid都在map端过滤
select ename,dept_name from E left outer join D on ( E.dept_id = D.dept_id and E.eid='HZ001') where D.dept_id = 'D001'; dept_id,eid都在reduce端过滤
select ename,dept_name from E left outer join D on ( E.dept_id = D.dept_id ) where E.eid='HZ001' and D.dept_id = 'D001'; dept_id在reduce端过滤,eid在map端过滤

注意:如果在表达式中含有不确定函数,整个表达式的谓词将不会被pushed,例如

select a.*
from a join b on a.id = b.id
where a.ds = '2019-10-09' and a.create_time = unix_timestamp();

因为unix_timestamp是不确定函数,在编译的时候无法得知,所以,整个表达式不会被pushed,即ds='2019-10-09'也不会被提前过滤。类似的不确定函数还有rand()等。

参考文献:

[1] https://cwiki.apache.org/confluence/display/Hive/OuterJoinBehavior

引用https://blog.csdn.net/strongyoung88/article/details/81156271

猜你喜欢

Hive计算最大连续登陆天数

Hadoop 数据迁移用法详解

Hbase修复工具Hbck

数仓建模分层理论

一文搞懂Hive的数据存储与压缩

大数据组件重点学习这几个

大数据SQL中的Join谓词下推,真的那么难懂?的更多相关文章

  1. SparkSQL大数据实战:揭开Join的神秘面纱

    本文来自 网易云社区 . Join操作是数据库和大数据计算中的高级特性,大多数场景都需要进行复杂的Join操作,本文从原理层面介绍了SparkSQL支持的常见Join算法及其适用场景. Join背景介 ...

  2. 最强最全面的大数据SQL经典面试题(由31位大佬共同协作完成)

    本套SQL题的答案是由许多小伙伴共同贡献的,1+1的力量是远远大于2的,有不少题目都采用了非常巧妙的解法,也有不少题目有多种解法.本套大数据SQL题不仅题目丰富多样,答案更是精彩绝伦! 注:以下参考答 ...

  3. 开发一个不需要重写成Hive QL的大数据SQL引擎

    摘要:开发一款能支持标准数据库SQL的大数据仓库引擎,让那些在Oracle上运行良好的SQL可以直接运行在Hadoop上,而不需要重写成Hive QL. 本文分享自华为云社区<​​​​​​​​​ ...

  4. SQL中inner join、outer join和cross join的区别

    对于SQL中inner join.outer join和cross join的区别简介:现有两张表,Table A 是左边的表.Table B 是右边的表.其各有四条记录,其中有两条记录name是相同 ...

  5. SQL中关于Join、Inner Join、Left Join、Right Join、Full Join、On、 Where区别

    前言: 今天主要的内容是要讲解SQL中关于Join.Inner Join.Left Join.Right Join.Full Join.On. Where区别和用法,不用我说其实前面的这些基本SQL语 ...

  6. 【转载】SQL中inner join、outer join和cross join的区别

    对于SQL中inner join.outer join和cross join的区别很多人不知道,我也是别人问起,才查找资料看了下,跟自己之前的认识差不多, 如果你使用join连表,缺陷的情况下是inn ...

  7. LINQ TO SQL 中的join(转帖)

    http://www.cnblogs.com/ASPNET2008/archive/2008/12/21/1358152.html join对于喜欢写SQL的朋友来说还是比较实用,也比较容易接受的东西 ...

  8. Hbase和Hive在大数据架构中处在不同位置

    先放结论:Hbase和Hive在大数据架构中处在不同位置,Hbase主要解决实时数据查询问题,Hive主要解决数据处理和计算问题,一般是配合使用.一.区别:Hbase: Hadoop database ...

  9. sql中的join

    首先准备数据 有以下数据,三张表:role(角色表).hero(英雄表).skill(技能表),我们以英雄联盟的数据做示例 一个hero对应一个role(我们这里暂定) 一个role可以对应多个her ...

随机推荐

  1. python编码问题:UnicodeDecodeError: 'gbk' codec can't decode

    在获取yaml文件数据时,提示:UnicodeDecodeError: 'gbk' codec can't decode byte 0x80 in position 2: illegal multib ...

  2. 集群环境下的Session管理

    1. 集群环境下的管理HTTPSSession所遇到的问题 一台服务器对应这个一个session对象,无法在另外一个服务器互通 解决方法: 1. Session 的 Replication(复制)将当 ...

  3. mybatis plus 一对多,多表联查的使用小记

    阅读本博文需要有基础的mybatis以及mybatis plus知识,如果没有建议您了解相关的内容 本项目使用的是springboot构建的,数据库字段命名不严谨仅做演示测试使用,本文不做相关源码的解 ...

  4. 11.3 LVS

    LVS是什么 LVS是Linux Virtual Server的简称,也就是Linux虚拟服务器, 是一个由章文嵩博士发起的自由软件项目,它的官方站点是www.linuxvirtualserver.o ...

  5. JVM学习笔记——GC垃圾收集器

    GC 垃圾收集器 Java 堆内存采用分代回收算法,因此 JVM 针对新生代和老年代提供了多种垃圾收集器. 1. Serial 收集器 Serial 收集器是单线程收集器,采用复制算法. 是最基本的垃 ...

  6. C++核心编程 1 程序的内存模型

    1.内存分区模型 C++程序在执行时,将内存大方向划分为4个区域 代码区:存放函数体的二进制代码,由操作系统进行管理(写的所有代码都在代码区) 全局区:存放全局变量.静态变量以及常量 栈   区:由编 ...

  7. asp.net core使用identity+jwt保护你的webapi(二)——获取jwt token

    前言 上一篇已经介绍了identity在web api中的基本配置,本篇来完成用户的注册,登录,获取jwt token. 开始 开始之前先配置一下jwt相关服务. 配置JWT 首先NuGet安装包: ...

  8. 使用 grpcurl 通过命令行访问 gRPC 服务

    原文链接: 使用 grpcurl 通过命令行访问 gRPC 服务 一般情况下测试 gRPC 服务,都是通过客户端来直接请求服务端.如果客户端还没准备好的话,也可以使用 BloomRPC 这样的 GUI ...

  9. Python - faker

    安装 faker pip install Faker pip install Dumper 设置生成器 from faker import Faker fake = Faker() 它可以通过访问以想 ...

  10. 【转载-Andrew_qian】stm32中断学习

    [转载]stm32中断学习 中断对于开发嵌入式系统来讲的地位绝对是毋庸置疑的,在C51单片机时代,一共只有5个中断,其中2个外部中断,2个定时/计数器中断和一个串口中断,但是在STM32中,中断数量大 ...