CF1278F Cards
CF1278F Cards
首先我们知道,一次拿牌的概率是 $ P(i) = \frac 1 m $ ,同时权值是1,所以期望就是 $ \frac{1} m $,拿 $ n $ 次牌贡献是独立的,就是 $ \frac n m $。
但是我们要算的是 $ k $ 次方的期望,众所周知期望的二次方不等于二次方的期望。我们考虑 $ E $ 的意义,$ E $ 在这一次拿到 Joker 的 $ \frac 1 m $ 的概率下是 1 ,其他情况是0。则 $ E^2 $ 就是随机两次,这两次都是 1 的情况下是 1 ,其他情况是0。
我们把这 $ n $ 次是否抓到 Joker 的 0/1 写成一个序列,所以知道最后统计的答案,就是所有的长度为 $ k $ 的有序子序列(可以是 $ A_3,A_2,A_2 $ 这种的 ),它做出贡献的前提就是这个子序列的所有随机变量都去到 1 了。
接着考虑,如果两个序列的位置种类数一致,那么它们出现的概率是相同的。如果知道这些位置都是 Joker ,那么这些位置组成的所有序列都会出现。
所以考虑一个 dp ,$ dp[i][j] $ 表示当前在选择第 $ i $ 个位置,到达这个位置时已经有 $ j $ 个不同的位置出现了。那么 $ \sum dp[k][i] \times \frac{1}{m^{i}} $ 就是答案,因为有 $ \frac{1}{m^i} $ 的概率这 $ i $ 个钦定的元素位置都是 Joker,这样带来的权值就是方案数。然后考虑这个 dp 的递推,这是很轻松的:
\]
就是考虑第 $ i $ 个位置是选择前 $ j $ 个之一还是新选择一种。
代码很简单:
#include "algorithm"
#include "iostream"
#include "cstring"
#include "cstdio"
using namespace std;
#define MAXN 5006
#define P 998244353
int n , m , k;
int dp[MAXN][MAXN];
int Pow( int a , int b ) {
int cur = a % P , ans = 1;
while( b ) {
if( b & 1 ) ans = 1ll * ans * cur % P;
cur = 1ll * cur * cur % P , b >>= 1;
}
return ans;
}
int main( ) {
cin >> n >> m >> k;
dp[0][0] = 1;
for( int i = 1 ; i <= k ; ++ i ) {
for (int j = 1; j <= i; ++j)
dp[i][j] = ( 1ll * dp[i-1][j] * j % P + 1ll * dp[i-1][j-1] * ( n - j + 1 ) % P ) % P;
}
int res = 0 , cur = 1 , p = Pow( m , P - 2 );
for( int i = 0 ; i <= k ; ++ i )
( res += 1ll * dp[k][i] * cur % P ) %= P , cur = 1ll * cur * p % P;
cout << res << endl;
}
CF1278F Cards的更多相关文章
- 洛谷 P6031 - CF1278F Cards 加强版(推式子+递推)
洛谷题面传送门 u1s1 这个推式子其实挺套路的吧,可惜有一步没推出来看了题解 \[\begin{aligned} res&=\sum\limits_{i=0}^ni^k\dbinom{n}{ ...
- FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ
因为垃圾电脑太卡了就重开了一个... 前传:多项式Ⅰ u1s1 我预感还会有Ⅲ 多项式基础操作: 例题: 26. CF438E The Child and Binary Tree 感觉这题作为第一题还 ...
- BZOJ 1004 【HNOI2008】 Cards
题目链接:Cards 听说这道题是染色问题的入门题,于是就去学了一下\(Bunside\)引理和\(P\acute{o}lya\)定理(其实还是没有懂),回来写这道题. 由于题目中保证"任意 ...
- Codeforces Round #384 (Div. 2) 734E Vladik and cards
E. Vladik and cards time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- bzoj 1004 Cards
1004: [HNOI2008]Cards Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有 多少种染色方案,Sun ...
- codeforces 744C Hongcow Buys a Deck of Cards
C. Hongcow Buys a Deck of Cards time limit per test 2 seconds memory limit per test 256 megabytes in ...
- CF 204B Little Elephant and Cards
题目链接: 传送门 Little Elephant and Cards time limit per test:2 second memory limit per test:256 megab ...
- HDU 1535 Invitation Cards(最短路 spfa)
题目链接: 传送门 Invitation Cards Time Limit: 5000MS Memory Limit: 32768 K Description In the age of te ...
- Codeforces Round #227 (Div. 2) E. George and Cards set内二分+树状数组
E. George and Cards George is a cat, so he loves playing very much. Vitaly put n cards in a row in ...
随机推荐
- SPI在JDBC中的运用
前言 之前学习了JDK SPI的机制,本文专门讨论2个内容: 1.为什么在使用SPI后,不需要Class.forName()了? 2.SPI在JDBC中的运用. JDBC模板代码 private st ...
- vue3.x移动端适配px2rem
1.什么是px2rem px2rem是一个插件能将px自动转换为rem,以适配各种不同的屏幕尺寸.前端开发可以直接使用设计稿量出的尺寸或者蓝湖给出的px进行布局,这样极大的提高了开发效率. 2.前提条 ...
- 阿里Nacos部署
Nacos的部署 一.单机部署 **4.修改 Nacos 存储为 Mysql** 二.集群部署 1.机器部署列表 2.修改 `nacos/conf/application.properties`中的端 ...
- CSS 奇技淫巧 | 巧妙实现文字二次加粗再加边框
本文将通过一个实际的业务需求,讲解如何实现 极端场景下文字加粗加边框效果 文字多重边框的效果 需求背景 - 文字的二次加粗 今天遇到这样一个有意思的问题: 在文字展示的时候,利用了 font-weig ...
- 树的子结构 牛客网 剑指Offer
树的子结构 牛客网 剑指Offer 题目描述 输入两棵二叉树A,B,判断B是不是A的子结构.(ps:我们约定空树不是任意一个树的子结构) # class TreeNode: # def __init_ ...
- 平衡二叉树检查 牛客网 程序员面试金典 C++ Python
平衡二叉树检查 牛客网 程序员面试金典 C++ Python 题目描述 实现一个函数,检查二叉树是否平衡,平衡的定义如下,对于树中的任意一个结点,其两颗子树的高度差不超过1. 给定指向树根结点的指针T ...
- 数组模拟双链表,你get到了吗?
数组模拟双链表 通过前面的学习我们知道单链表是单个指针指向操作,那么通过类比我们可以把指针设定为两个,并且让它们分别指向前后数据,这就是"双向链表".使用这种链表,不仅可以从前往后 ...
- 安装配置多个版本JDK
前言:JDK有多个版本,有时为了开发需要切换不同的版本,在一部电脑上安装多个JDK,只需要按以下配置,每次即可轻松使用.以下环境为Windows10 安装JDK 安装JDK8 配置环境变量 需要配置J ...
- $.ajax、$.get和$.post方法成功,完成请求,错误或失败的回调
一.$.get和$.post的不同 1.get通过url提交的,post是通过http消息实体提交的 2.get提交大小限制为2kb,post不限制 3.get提交会被缓存下来,有安 ...
- shell 中单引号和双引号的区别
用以下代码来说明: #!/bin/bash url="http://c.biancheng.net" website1='C语言中文网:${url}' website2=" ...