稳定婚姻问题就是给你n个男的,n个女的,然后给你每个男生中女生的排名,和女生心目中男生的排名,然后让你匹配成n对,使婚姻稳定,假如a和b匹配,c和d匹配,如果a认为d比b好,同时d也认为a比c好,那么ad就有可能私奔,这样就导致了婚姻的不稳定,稳定婚姻就是找到一种解决方案让婚姻稳定

算法:

      稳定婚姻的解决方法比较简单,通俗易懂,而且还容易实现,具体有没有固定的模板我不知道,没有去找,自己模拟的,在求解的过程中,我们先把所有的男生都加到队列里,队列里的就表示当前还单身的男生,每次从队列里拿出一个男生,然后从她最喜欢的女生开始匹配,如果当前的女生尝试追求过,那么就不用追求了,如果当前的女生没有伴侣,那么可以直接匹配上,如果有伴侣,那么就看看当前这个男生和女生之前的伴侣在那个女生中更喜欢谁,如果更喜欢当先的这个男生,那么当前男生就和这个女生匹配,女生之前匹配过的直接变成单身,被扔回队列,否则,继续找下一个女生,知道找到一个能匹配上的为止,就这样一直到队列空的时候,就已经全部匹配完成了。


正确性:

        对于男生来说,每次都是从最喜欢的女生开始匹配的,遇到的第一个没人能抢走的并且稳定的就是自己最终伴侣,也就是说如果之前追求过的女生被别人抢走了,那么他将永远抢不会来,因为对于女生来说,第一次被男士按照自己的意愿选择之后,每次变更匹配对象都是在自己心目中更加喜欢的,所以一旦他放弃了某个男生,那么那个男生就没希望在和他匹配,这样男生是从最优的选的,保证男生不会出轨,女生每次都是在选择她的男生中选择最优的,这样也保证了女生最后没有怨言,这样的话,最后的到的婚姻就是稳定的,至于稳定婚姻,肯定会有稳定方案,这个我暂时证明不了.<1962年,美国数学家
David Gale 和 Lloyd Shapley是这两个人发明的方法,并且证明了稳定婚姻一定会有解>。

#include<stdio.h>

#include<string.h>

#include<queue>

#include<algorithm>

#define N 30

using namespace std;

typedef struct

{

   char a ,b;

}NODE;

NODE Ans[N];

int map[N][N] ,G_b[N][N];

int nowb[N] ,nowg[N];

char nameb[N] ,nameg[N];

int mark[N][N] ,ID[200];

bool camp(NODE a ,NODE b)

{

   return a.a < b.a;

}

void Marr(int n)

{

   queue<int>q;

   for(int i = 1 ;i <= n ;i ++)

   q.push(i);

  

   memset(mark ,0 ,sizeof(mark));

   memset(nowb ,255 ,sizeof(nowb));

   memset(nowg ,255 ,sizeof(nowg));

  

   while(!q.empty())

   {

      int xin ,tou = q.front();

      q.pop();

     

      for(int i = 1 ;i <= n ;i ++)

      {

         xin = map[tou][i];

         if(mark[tou][xin]) continue;

         mark[tou][xin] = 1;

         if(nowg[xin] == -1)

         {

            nowg[xin] = tou;

            nowb[tou] = xin;

            break;

         }

         else

         {

            if(G_b[xin][tou] > G_b[xin][nowg[xin]])

            {

               q.push(nowg[xin]);

               nowg[xin] = tou;

               nowb[tou] = xin;

               break;

            }

         }

      }

   }

   return ;

}

int main ()

{

   int t ,n ,i ,j;

   char str[30];

   scanf("%d" ,&t);

   while(t--)

   {

      scanf("%d" ,&n);

      getchar();

      for(i = 1 ;i <= n ;i ++)

      {

         scanf("%s" ,str);

         ID[str[0]] = i;

         nameb[i] = str[0];

      }

      for(i = 1 ;i <= n ;i ++)

      {

         scanf("%s" ,str);

         ID[str[0]] = i;

         nameg[i] = str[0];

      }

      for(i = 1 ;i <= n ;i ++)

      {

         scanf("%s" ,str);

         for(j = 2 ;j <= n + 1 ;j ++)

         map[ID[str[0]]][j-1] = ID[str[j]];

      }

      for(i = 1 ;i <= n ;i ++)

      {

         scanf("%s" ,str);

         for(j = 2 ;j <= n + 1 ;j ++)

         G_b[ID[str[0]]][ID[str[j]]] = n - j + 2;

      }

      Marr(n);

      for(i = 1 ;i <= n ;i ++)

      Ans[i].a = nameb[i] ,Ans[i].b = nameg[nowb[i]];

      sort(Ans + 1 ,Ans + n + 1 ,camp);

      for(i = 1 ;i <= n ;i ++)

      printf("%c %c\n" ,Ans[i].a ,Ans[i].b);

      if(t) printf("\n");

   }

   return 0;

}

hdu1914 稳定婚姻问题的更多相关文章

  1. HDU1914 稳定婚姻匹配

    The Stable Marriage Problem Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (J ...

  2. 【HDU1914 The Stable Marriage Problem】稳定婚姻问题

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1914 题目大意:问题大概是这样:有一个社团里有n个女生和n个男生,每位女生按照她的偏爱程度将男生排序, ...

  3. UVA 1175 Ladies' Choice 稳定婚姻问题

    题目链接: 题目 Ladies' Choice Time Limit: 6000MS Memory Limit: Unknown 64bit IO Format: %lld & %llu 问题 ...

  4. BZOJ2140: 稳定婚姻

    题解: 题意就是求二分图的必须边. 我们有结论: 在残量网络上跑tarjan,对于一条边(u,v) 如果该边满流||scc[u]==scc[v],那么该边是可行边. 因为如果scc[u]==scc[v ...

  5. 【POJ 3487】 The Stable Marriage Problem (稳定婚姻问题)

    The Stable Marriage Problem   Description The stable marriage problem consists of matching members o ...

  6. 【UVAlive 3989】 Ladies' Choice (稳定婚姻问题)

    Ladies' Choice Teenagers from the local high school have asked you to help them with the organizatio ...

  7. 【稳定婚姻问题】【HDU1435】【Stable Match】

    2015/7/1 19:48 题意:给一个带权二分图  求稳定匹配 稳定的意义是对于某2个匹配,比如,( a ---- 1) ,(b----2) , 如果 (a,2)<(a,1) 且(2,a)& ...

  8. poj 3487 稳定婚姻

    /** 稳定婚姻:男生不停的求婚,女生不停地拒绝 **/ #include <iostream> #include <queue> #include <cstdio> ...

  9. 稳定婚姻问题和Gale-Shapley算法(转)

    什么是算法?每当有人问作者这样的问题时,他总会引用这个例子:假如你是一个媒人,有若干个单身男子登门求助,还有同样多的单身女子也前来征婚.如果你已经知道这些女孩儿在每个男孩儿心目中的排名,以及男孩儿们在 ...

随机推荐

  1. 剑指 Offer 31. 栈的压入、弹出序列 + 入栈顺序和出栈顺序的匹配问题

    剑指 Offer 31. 栈的压入.弹出序列 Offer_31 题目详情: 解析: 这里需要使用一个栈来模仿入栈操作. package com.walegarrett.offer; /** * @Au ...

  2. js mysql 时间日期比较

    js代码 1 var date1 = '2017/2/13'; 2 //var date1 = new Date().toLocaleDateString(); 3 var date2 = '2017 ...

  3. [Elementary Mechanics-01]Two masses and a spring

    [Elementary Mechanics Using Python-01] Question 5.28 Two masses and a spring. Two particles of m = 0 ...

  4. ZooKeeper 的选举机制,你了解多少?

    本文作者:HelloGitHub-老荀 Hi,这里是 HelloGitHub 推出的 HelloZooKeeper 系列,免费开源.有趣.入门级的 ZooKeeper 教程,面向有编程基础的新手. 项 ...

  5. Eric Python IDE 论文数据图片生成

    Python编写,基于跨平台的Qt GUI工具包,集成了高度灵活的Scintilla编辑器控件. 大括号匹配,错误突出显示和可配置语法突出显示. 拼写检查库的集成 内置Python调试器,包括支持调试 ...

  6. python打印9宫格25宫格81宫格.....

    """ 2 问题描述: 3 给定一个奇数(num),生成一个横竖斜加起来的和相等 4 问题解析: 5 这其实就是一个九宫格的问题 6 九宫格问题的解答技巧: 7 1要放在 ...

  7. P1036_选数(JAVA语言)

    题目描述 已知 n 个整数x1​,x2​,-,xn​,以及1个整数k(k<n).从n个整数中任选k个整数相加,可分别得到一系列的和.例如当n=4,k=3,4个整数分别为3,7,12,19时,可得 ...

  8. JDK 16 正式发布,一次性发布 17 个新特性…不服不行!

    上一篇:Java 15 正式发布, 14 个新特性 JDK 16 正式发布 牛逼啊,JDK 15 刚发布半年(2020/09/15),JDK 16 又如期而至(2021/03/16),老铁们,跟上. ...

  9. 【安全研究】Domain fronting域名前置网络攻击技术

    出品|MS08067实验室(www.ms08067.com) 千里百科 Domain Fronting基于HTTPS通用规避技术,也被称为域前端网络攻击技术.这是一种用来隐藏Metasploit,Co ...

  10. GoldenEye靶机work_through暨CVE-2013-3630复现

    前言 备考OSCP,所以接下来会做一系列的OSCP向靶机来练手 靶机描述 I recently got done creating an OSCP type vulnerable machine th ...