稳定婚姻问题就是给你n个男的,n个女的,然后给你每个男生中女生的排名,和女生心目中男生的排名,然后让你匹配成n对,使婚姻稳定,假如a和b匹配,c和d匹配,如果a认为d比b好,同时d也认为a比c好,那么ad就有可能私奔,这样就导致了婚姻的不稳定,稳定婚姻就是找到一种解决方案让婚姻稳定

算法:

      稳定婚姻的解决方法比较简单,通俗易懂,而且还容易实现,具体有没有固定的模板我不知道,没有去找,自己模拟的,在求解的过程中,我们先把所有的男生都加到队列里,队列里的就表示当前还单身的男生,每次从队列里拿出一个男生,然后从她最喜欢的女生开始匹配,如果当前的女生尝试追求过,那么就不用追求了,如果当前的女生没有伴侣,那么可以直接匹配上,如果有伴侣,那么就看看当前这个男生和女生之前的伴侣在那个女生中更喜欢谁,如果更喜欢当先的这个男生,那么当前男生就和这个女生匹配,女生之前匹配过的直接变成单身,被扔回队列,否则,继续找下一个女生,知道找到一个能匹配上的为止,就这样一直到队列空的时候,就已经全部匹配完成了。


正确性:

        对于男生来说,每次都是从最喜欢的女生开始匹配的,遇到的第一个没人能抢走的并且稳定的就是自己最终伴侣,也就是说如果之前追求过的女生被别人抢走了,那么他将永远抢不会来,因为对于女生来说,第一次被男士按照自己的意愿选择之后,每次变更匹配对象都是在自己心目中更加喜欢的,所以一旦他放弃了某个男生,那么那个男生就没希望在和他匹配,这样男生是从最优的选的,保证男生不会出轨,女生每次都是在选择她的男生中选择最优的,这样也保证了女生最后没有怨言,这样的话,最后的到的婚姻就是稳定的,至于稳定婚姻,肯定会有稳定方案,这个我暂时证明不了.<1962年,美国数学家
David Gale 和 Lloyd Shapley是这两个人发明的方法,并且证明了稳定婚姻一定会有解>。

#include<stdio.h>

#include<string.h>

#include<queue>

#include<algorithm>

#define N 30

using namespace std;

typedef struct

{

   char a ,b;

}NODE;

NODE Ans[N];

int map[N][N] ,G_b[N][N];

int nowb[N] ,nowg[N];

char nameb[N] ,nameg[N];

int mark[N][N] ,ID[200];

bool camp(NODE a ,NODE b)

{

   return a.a < b.a;

}

void Marr(int n)

{

   queue<int>q;

   for(int i = 1 ;i <= n ;i ++)

   q.push(i);

  

   memset(mark ,0 ,sizeof(mark));

   memset(nowb ,255 ,sizeof(nowb));

   memset(nowg ,255 ,sizeof(nowg));

  

   while(!q.empty())

   {

      int xin ,tou = q.front();

      q.pop();

     

      for(int i = 1 ;i <= n ;i ++)

      {

         xin = map[tou][i];

         if(mark[tou][xin]) continue;

         mark[tou][xin] = 1;

         if(nowg[xin] == -1)

         {

            nowg[xin] = tou;

            nowb[tou] = xin;

            break;

         }

         else

         {

            if(G_b[xin][tou] > G_b[xin][nowg[xin]])

            {

               q.push(nowg[xin]);

               nowg[xin] = tou;

               nowb[tou] = xin;

               break;

            }

         }

      }

   }

   return ;

}

int main ()

{

   int t ,n ,i ,j;

   char str[30];

   scanf("%d" ,&t);

   while(t--)

   {

      scanf("%d" ,&n);

      getchar();

      for(i = 1 ;i <= n ;i ++)

      {

         scanf("%s" ,str);

         ID[str[0]] = i;

         nameb[i] = str[0];

      }

      for(i = 1 ;i <= n ;i ++)

      {

         scanf("%s" ,str);

         ID[str[0]] = i;

         nameg[i] = str[0];

      }

      for(i = 1 ;i <= n ;i ++)

      {

         scanf("%s" ,str);

         for(j = 2 ;j <= n + 1 ;j ++)

         map[ID[str[0]]][j-1] = ID[str[j]];

      }

      for(i = 1 ;i <= n ;i ++)

      {

         scanf("%s" ,str);

         for(j = 2 ;j <= n + 1 ;j ++)

         G_b[ID[str[0]]][ID[str[j]]] = n - j + 2;

      }

      Marr(n);

      for(i = 1 ;i <= n ;i ++)

      Ans[i].a = nameb[i] ,Ans[i].b = nameg[nowb[i]];

      sort(Ans + 1 ,Ans + n + 1 ,camp);

      for(i = 1 ;i <= n ;i ++)

      printf("%c %c\n" ,Ans[i].a ,Ans[i].b);

      if(t) printf("\n");

   }

   return 0;

}

hdu1914 稳定婚姻问题的更多相关文章

  1. HDU1914 稳定婚姻匹配

    The Stable Marriage Problem Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (J ...

  2. 【HDU1914 The Stable Marriage Problem】稳定婚姻问题

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1914 题目大意:问题大概是这样:有一个社团里有n个女生和n个男生,每位女生按照她的偏爱程度将男生排序, ...

  3. UVA 1175 Ladies' Choice 稳定婚姻问题

    题目链接: 题目 Ladies' Choice Time Limit: 6000MS Memory Limit: Unknown 64bit IO Format: %lld & %llu 问题 ...

  4. BZOJ2140: 稳定婚姻

    题解: 题意就是求二分图的必须边. 我们有结论: 在残量网络上跑tarjan,对于一条边(u,v) 如果该边满流||scc[u]==scc[v],那么该边是可行边. 因为如果scc[u]==scc[v ...

  5. 【POJ 3487】 The Stable Marriage Problem (稳定婚姻问题)

    The Stable Marriage Problem   Description The stable marriage problem consists of matching members o ...

  6. 【UVAlive 3989】 Ladies' Choice (稳定婚姻问题)

    Ladies' Choice Teenagers from the local high school have asked you to help them with the organizatio ...

  7. 【稳定婚姻问题】【HDU1435】【Stable Match】

    2015/7/1 19:48 题意:给一个带权二分图  求稳定匹配 稳定的意义是对于某2个匹配,比如,( a ---- 1) ,(b----2) , 如果 (a,2)<(a,1) 且(2,a)& ...

  8. poj 3487 稳定婚姻

    /** 稳定婚姻:男生不停的求婚,女生不停地拒绝 **/ #include <iostream> #include <queue> #include <cstdio> ...

  9. 稳定婚姻问题和Gale-Shapley算法(转)

    什么是算法?每当有人问作者这样的问题时,他总会引用这个例子:假如你是一个媒人,有若干个单身男子登门求助,还有同样多的单身女子也前来征婚.如果你已经知道这些女孩儿在每个男孩儿心目中的排名,以及男孩儿们在 ...

随机推荐

  1. 微信小程序日期转时间戳

    let date = '2019-10-14'; var repTime = date.replace(/-/g, '/'); var timeTamp = Date.parse(repTime) / ...

  2. [极客大挑战 2019]Secret File 1

    题目的名字就暗示我们考点文件隐藏进入页面查看源码 得到隐藏的界面点击访问 点击给的"SECRET"按钮页面出现提示"没看清么?回去再仔细看看吧.",说明响应的时 ...

  3. 爬虫必知必会(4)_异步协程-selenium_模拟登陆

    一.单线程+多任务异步协程(推荐) 协程:对象.可以把协程当做是一个特殊的函数.如果一个函数的定义被async关键字所修饰.该特殊的函数被调用后函数内部的程序语句不会被立即执行,而是会返回一个协程对象 ...

  4. java 动态规划解决最大连续子数列和

    很多动态规划算法非常像数学中的递推.我们如果能找到一个合适的递推公式,就能很容易的解决问题.我们用dp[n]表示以第n个数结尾的最大连续子序列的和,这里第n个数必须在子序列中.于是存在以下递推公式: ...

  5. 冒泡排序算法的实现(Java)

    什么是冒泡排序 冒泡排序(Bubble Sort),是一种计算机科学领域的较简单的排序算法.它重复地走访过要排序的元素列,依次比较两个相邻的元素,如果顺序(如从大到小.首字母从Z到A)错误就把他们交换 ...

  6. 妙味课上利用splice进行数组去重为什么要 j--

    var arr = [ 1,2,2,4,4,5,8,8,9,0,4,4 ]; for ( var i=0; i<arr.length; i++ ) { for ( var j=i+1; j< ...

  7. c++ 反汇编 异常处理

    c++异常处理 int main(){ try { throw 1; } catch ( int e ) { printf("catch int\r\n"); } catch ( ...

  8. Jmeter(四十) - 从入门到精通进阶篇 - Jmeter配置文件的刨根问底 - 中篇(详解教程)

    1.简介 为什么宏哥要对Jmeter的配置文件进行一下讲解了,因为有的童鞋或者小伙伴在测试中遇到一些需要修改配置文件的问题不是很清楚也不是很懂,就算修改了也是模模糊糊的.更有甚者觉得那是禁地神圣不可轻 ...

  9. Dcoker-搭建日志监控系统

    项目中常用集中日志收集工具 Logstash Logstash是一个开源数据收集引擎,具有实时管道功能.Logstash可以动态地将来自不同数据源的数据统一起来,并将数据标准化到你所选择的目的地. 优 ...

  10. ELK查询命令详解总结

    目录 ELK查询命令详解 倒排索引 倒排索引原理 分词器介绍及内置分词器 使用ElasticSearch API 实现CRUD 批量获取文档 使用Bulk API 实现批量操作 版本控制 什么是Map ...