非极大值抑制算法(Python实现)
date: 2017-07-21 16:48:02
非极大值抑制算法(Non-maximum suppression, NMS)
算法原理
非极大值抑制算法的本质是搜索局部极大值,抑制非极大值元素。
算法用途
如在物体检测中可以通过应用NMS算法来消除多余的交叉重复的窗口,使在同一物体的多个检测窗口中保留下得分最高的窗口。
NMS算法亦可用于视频跟踪/数据挖掘/3D重建以及文理分析等。
算法实现思路
首先迭代所有的点,迭代每一个点的时候判断该点是否符合局部最大值的条件。
NMS算法在三邻域情况下的实现
三邻域情况下的NMS即判断一维数组array中的元素array[i]是否大于其左邻元素array[i-1]和右邻元素array[i+1],具体实现如下图(Python表示):
import numpy as np
array = [0] + np.random.randint(100, size=10).tolist() + [0]
keep = []
i = 1
while i <= 10:
if array[i] > array[i+1]:
if array[i] > array[i-1]:
keep.append(array[i])
else:
i += 1
while i <= 10 and array[i] <= array[i+1]:
i += 1
if i <= 10:
keep.append(array[i])
i += 2
NMS算法应用于人脸检测窗口选择的实现(Python实现)
import numpy as np
def nms(rects, threshold):
x1, y1, x2, y2, scores = rects[:, 0], rects[:, 1], rects[:, 2], rects[:, 3], rects[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
inter = np.maximun(0.0, xx2 - xx1 + 1) * np.maximum(0.0, yy2 - yy1 + 1)
iou = inter / (areas[i] + areas[order[1:]] - inter)
indexs = np.where(iou <= threshold)[0]
order = order[indexs + 1]
return keep
非极大值抑制算法(Python实现)的更多相关文章
- 目标检测后处理之NMS(非极大值抑制算法)
1.定义: 非极大值抑制算法NMS广泛应用于目标检测算法,其目的是为了消除多余的候选框,找到最佳的物体检测位置. 2.原理: 使用深度学习模型检测出的目标都有多个框,如下图,针对每一个被检测目标,为了 ...
- Non-maximum suppression(非极大值抑制算法)
在RCNN系列目标检测中,有一个重要的算法,用于消除一些冗余的bounding box,这就是non-maximum suppression算法. 这里有一篇博客写的挺好的: http://www.c ...
- NMS(非极大值抑制算法)
目的:为了消除多余的框,找到最佳的物体检测的位置 思想: 选取那些领域里分数最高的窗口,同时抑制那些分数低的窗口 Soft-NMS
- [DeeplearningAI笔记]卷积神经网络3.6-3.9交并比/非极大值抑制/Anchor boxes/YOLO算法
4.3目标检测 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.6交并比intersection over union 交并比函数(loU)可以用来评价对象检测算法,可以被用来进一步改善对 ...
- 第二十七节,IOU和非极大值抑制
你如何判断对象检测算法运作良好呢?在这一节中,你将了解到并交比函数,可以用来评价对象检测算法. 一 并交比(Intersection over union ) 在对象检测任务中,你希望能够同时定位对象 ...
- 【56】目标检测之NMS非极大值抑制
非极大值抑制(Non-max suppression) 到目前为止你们学到的对象检测中的一个问题是,你的算法可能对同一个对象做出多次检测,所以算法不是对某个对象检测出一次,而是检测出多次.非极大值抑制 ...
- 『Python』图像金字塔、滑动窗口和非极大值抑制实现
图像金字塔 1.在从cv2.resize中,传入参数时先列后行的 2.使用了python中的生成器,调用时使用for i in pyramid即可 3.scaleFactor是缩放因子,需要保证缩放后 ...
- MATLAB的边缘检测函数中隐含的细化(非极大值抑制)算法
前段时间做了一个车牌检测识别的项目,我的任务是将MATLAB中的算法移植成C++代码.在车牌区域提取的过程中,用到了水平方向的Sobel算子检测垂直边缘,一开始我直接把MATLAB中的 bw = ed ...
- 非极大值抑制(Non-Maximum Suppression,NMS)
概述 非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索.这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数,二 ...
随机推荐
- linux安全篇:禁止频繁访问的ip访问nginx
实验环境 版本:redhat6.5ip:172.16.1.100,172.16.10软件:nginx 172.16.1.10部署nginx [root@localhost tools]# lsngin ...
- CentOS7端口被占用的解决办法
1.根据端口号得到其占用的进程的详细信息 netstat -tlnp|grep 80tcp 0 0 192.168.33.10:80 0.0.0.0:* ...
- 使用swagger生成API文档
有时候一份清晰明了的接口文档能够极大地提高前后端双方的沟通效率和开发效率.本文将介绍如何使用swagger生成接口文档. swagger介绍 Swagger本质上是一种用于描述使用JSON表示的RES ...
- FastDFSJava客户端使用
1.1.java客户端 余庆先生提供了一个Java客户端,但是作为一个C程序员,写的java代码可想而知.而且已经很久不维护了. 这里推荐一个开源的FastDFS客户端,支持最新的SpringBoot ...
- Keil MDK STM32系列(一) 基于标准外设库SPL的STM32F103开发
Keil MDK STM32系列 Keil MDK STM32系列(一) 基于标准外设库SPL的STM32F103开发 Keil MDK STM32系列(二) 基于标准外设库SPL的STM32F401 ...
- 一条 Git 命令减少了一般存储空间,我的服务器在偷着笑
元旦不是搭建了一个<Java 程序员进阶之路>的网站嘛,其中用到了 Git 来作为云服务器和 GitHub 远程仓库之间的同步工具. 作为开发者,相信大家都知道 Git 的重要性.Git ...
- java之类的抽取与对象的创建
Java语言之类的抽取 前言:世界由什么组成?This is a question.有人说是原子.分子,有人说是山川草木. 诚然,一千个人眼中有一千个哈姆雷特.而在程序员眼中,万物皆对象. 定义: 在 ...
- 【刷题-LeetCode】123 Best Time to Buy and Sell Stock III
Best Time to Buy and Sell Stock III Say you have an array for which the ith element is the price of ...
- linux新分区无法新建文件夹
问题 因为最初分区480g随便都给了home,后来发现备份以及导出系统至IOS都要另外插硬盘很麻烦.所以需要重新分区.使用装机U盘的live ubuntu20系统使用Gparted分区后,发现回到Ub ...
- 切换不同的echarts时,出现图标缩小,报警告,Can’t get dom width or height!
出现这样的原因是因为,在切换的时候,图表所对应的标签还没有显示出来,最好将代码放在$nextick里面执行,并且,采用使用v-if进行切换 转载:https://www.pianshen.com/ar ...