date: 2017-07-21 16:48:02

非极大值抑制算法(Non-maximum suppression, NMS)

算法原理

非极大值抑制算法的本质是搜索局部极大值,抑制非极大值元素。

算法用途

如在物体检测中可以通过应用NMS算法来消除多余的交叉重复的窗口,使在同一物体的多个检测窗口中保留下得分最高的窗口。


NMS算法亦可用于视频跟踪/数据挖掘/3D重建以及文理分析等。

算法实现思路

首先迭代所有的点,迭代每一个点的时候判断该点是否符合局部最大值的条件。

NMS算法在三邻域情况下的实现

三邻域情况下的NMS即判断一维数组array中的元素array[i]是否大于其左邻元素array[i-1]和右邻元素array[i+1],具体实现如下图(Python表示):

import numpy as np

array = [0] + np.random.randint(100, size=10).tolist() + [0]
keep = []
i = 1 while i <= 10:
if array[i] > array[i+1]:
if array[i] > array[i-1]:
keep.append(array[i])
else:
i += 1
while i <= 10 and array[i] <= array[i+1]:
i += 1
if i <= 10:
keep.append(array[i])
i += 2

NMS算法应用于人脸检测窗口选择的实现(Python实现)

import numpy as np

def nms(rects, threshold):
x1, y1, x2, y2, scores = rects[:, 0], rects[:, 1], rects[:, 2], rects[:, 3], rects[:, 4] areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]]) inter = np.maximun(0.0, xx2 - xx1 + 1) * np.maximum(0.0, yy2 - yy1 + 1)
iou = inter / (areas[i] + areas[order[1:]] - inter)
indexs = np.where(iou <= threshold)[0]
order = order[indexs + 1] return keep

非极大值抑制算法(Python实现)的更多相关文章

  1. 目标检测后处理之NMS(非极大值抑制算法)

    1.定义: 非极大值抑制算法NMS广泛应用于目标检测算法,其目的是为了消除多余的候选框,找到最佳的物体检测位置. 2.原理: 使用深度学习模型检测出的目标都有多个框,如下图,针对每一个被检测目标,为了 ...

  2. Non-maximum suppression(非极大值抑制算法)

    在RCNN系列目标检测中,有一个重要的算法,用于消除一些冗余的bounding box,这就是non-maximum suppression算法. 这里有一篇博客写的挺好的: http://www.c ...

  3. NMS(非极大值抑制算法)

    目的:为了消除多余的框,找到最佳的物体检测的位置 思想: 选取那些领域里分数最高的窗口,同时抑制那些分数低的窗口 Soft-NMS

  4. [DeeplearningAI笔记]卷积神经网络3.6-3.9交并比/非极大值抑制/Anchor boxes/YOLO算法

    4.3目标检测 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.6交并比intersection over union 交并比函数(loU)可以用来评价对象检测算法,可以被用来进一步改善对 ...

  5. 第二十七节,IOU和非极大值抑制

    你如何判断对象检测算法运作良好呢?在这一节中,你将了解到并交比函数,可以用来评价对象检测算法. 一 并交比(Intersection over union ) 在对象检测任务中,你希望能够同时定位对象 ...

  6. 【56】目标检测之NMS非极大值抑制

    非极大值抑制(Non-max suppression) 到目前为止你们学到的对象检测中的一个问题是,你的算法可能对同一个对象做出多次检测,所以算法不是对某个对象检测出一次,而是检测出多次.非极大值抑制 ...

  7. 『Python』图像金字塔、滑动窗口和非极大值抑制实现

    图像金字塔 1.在从cv2.resize中,传入参数时先列后行的 2.使用了python中的生成器,调用时使用for i in pyramid即可 3.scaleFactor是缩放因子,需要保证缩放后 ...

  8. MATLAB的边缘检测函数中隐含的细化(非极大值抑制)算法

    前段时间做了一个车牌检测识别的项目,我的任务是将MATLAB中的算法移植成C++代码.在车牌区域提取的过程中,用到了水平方向的Sobel算子检测垂直边缘,一开始我直接把MATLAB中的 bw = ed ...

  9. 非极大值抑制(Non-Maximum Suppression,NMS)

    概述 非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索.这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数,二 ...

随机推荐

  1. 从Base64编码转换为图片文件

    package luckyclient.utils;import java.io.FileInputStream;import java.io.FileOutputStream;import java ...

  2. springboot 配置 swagger2

    1.pom.xml 添加依赖 <!--swagger2 依赖--> <dependency> <groupId>io.springfox</groupId&g ...

  3. a href 鼠标滑过变成小手图标

    <a id="l05" style="cursor:pointer;text-decoration:none;" href="<%=pat ...

  4. 简单的树莓派4b装64位系统+docker和docker-compose

    起因是这样的,我系统崩了 事先准备 wifi或网线 树莓派和电源 内存卡和读卡器 首先是装系统 去https://downloads.raspberrypi.org/raspios_arm64/ima ...

  5. 51 Nod 1183 编辑距离 (动态规划基础)

    原题链接:1183 编辑距离 题目分析:这个最少的操作次数,通常被称之为编辑距离."编辑距离"一次本身具有最短的意思在里面.因为题目有"最短"这样的关键词,首先 ...

  6. PIKACHU之文件包含漏洞

    PIKUCHU靶场之文件包含 一.file inclusion(local) 实验源码: <?php /** * Created by runner.han * There is nothing ...

  7. [MAUI] 在.NET MAUI中结合Vue实现混合开发

    ​ 在MAUI微软的官方方案是使用Blazor开发,但是当前市场大多数的Web项目使用Vue,React等技术构建,如果我们没法绕过已经积累的技术,用Blazor重写整个项目并不现实. Vue是当前流 ...

  8. java基础04-数据类型扩展及面试题

    java基础04-数据类型扩展及面试题讲解 public class demo02 { public static void main(String[] args){ // 一.整数拓展: 进制 二进 ...

  9. 【C++】STL算法

    STL算法 标签:c++ 目录 STL算法 一.不变序列算法 1.熟悉的min(), max() 2.找最值还自己动手么?不了不了 3.熟悉的find()和新学会的count() 二.变值算法 1.f ...

  10. 【刷题-LeetCode】215. Kth Largest Element in an Array

    Kth Largest Element in an Array Find the kth largest element in an unsorted array. Note that it is t ...