\(\mathcal{Description}\)

  Link.

  一种物品有 长度权值 两种属性,现给定 \(n\) 组物品,第 \(i\) 组有 \(k_i\) 个,分别为 \((1,a_{i,1})..(k_i,a_{i,k_i})\),求在每组物品里恰好选择一个物品,且物品长度和恰为 \(i=n..\sum k\) 时的最大物品权值和。

  \(n\le10^5\),\(k_i\le5\)。

\(\mathcal{Solution}\)

  本次 NOIP 模拟赛 考察的知识点包括但不限于:凸性函数的研究应用、闵可夫斯基和、Gale-Ryser 定理、LCT……是一套非常优秀的组题。

  先令所有长度 \(-1\),长度区间变为 \([0,K=4]\)。考虑暴力 DP,令 \(f(i,j)\) 在前 \(i\) 组中选出长度和为 \(j\) 的物品时最大权值和。

  结论:令 \(L=12\),\(f_{i,r}(x)=f(i,xL+r)~(r\in[0,L),x\in\mathbb N)\),则 \(f_{i,r}(x)\) 的图像是上凸的点集。

证明

  承认这样一个结论:对于整数集 $A$,$\forall a\in A,a\in[0,4],\sum_{a\in A}=24$,则 $\exist B\subseteq A,\sum_{b\in B}b=12$。

  作者水平有限,没有找到除暴搜和冗长分类讨论之外的简洁证明。且满足这一性质的常数值除 \(([0,4],24)\) 以外,还有许多分布规律不明显的解。有兴趣的读者欢迎一起讨论。

  此后,考虑任意 \(f_{i,r}(x-1),f_{i,r}(x),f_{i,r}(x+1)\)。研究从 \(f_{i,r}(x-1)\) 的最优解调整得到 \(f_{i,r}(x+1)\) 最优解的过程,设第 \(j\) 组物品所选长度变化量为 \(\Delta_j\),可以看出 \(\Delta_j\in[-4,4]\),且 \(\sum\Delta_j=2L=24\)。我们能通过贪心的方式构造将 \(\Delta_j\) 分组,使得每组 \(\Delta_j\) 之和 \(\in[0,4]\),运用上文结论,得到两组长度变化量为 \(12\) 的调整方案 \(D_1,D_2\)。将其中权值变化量较大的一组作用在 \(f_{i,r}(x-1)\) 上可以得到 \(f_{i,r}(x)\) 的一个下界,即有 \(f_{i,r}(x)\ge\frac{f_{i,r}(x-1)+f_{i,r}(x+1)}{2}\),结合 \(x=\frac{(x-1)+(x+1)}{2}\),我们证明了两点中点在图像形成的多边形内,即,图像是(上)凸的。 \(\square\)

  利用结论,分治 + 闵可夫斯基和求出函数 \(f_{n,0..L-1}\) 即可。复杂度 \(\mathcal O(LKn\log n)\)。

\(\mathcal{Code}\)

  由于着急补题,直接套了计算几何的板子。针对凸性 DP 的高效归并可以看 OneInDark 的博客

/*~Rainybunny~*/

#ifndef RYBY
#pragma GCC optimize( "Ofast" )
#endif #include <bits/stdc++.h> #define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i ) typedef long long LL; inline char fgc() {
static char buf[1 << 17], *p = buf, *q = buf;
return p == q && ( q = buf + fread( p = buf, 1, 1 << 17, stdin ), p == q )
? EOF : *p++;
} inline int rint() {
int x = 0, s = fgc();
for ( ; s < '0' || '9' < s; s = fgc() );
for ( ; '0' <= s && s <= '9'; s = fgc() ) x = x * 10 + ( s ^ '0' );
return x;
} inline void wint( const LL x ) {
if ( 9 < x ) wint( x / 10 );
putchar( x % 10 ^ '0' );
} inline void chkmax( LL& u, const LL v ) { u < v && ( u = v ); } const int MAXN = 1e5; namespace PGP { const double EPS = 1e-9, PI = acos( -1. ); inline int dcmp( const double a ) {
return -EPS < a && a < EPS ? 0 : a < 0 ? -1 : 1;
} struct Point {
int x; LL y;
Point(): x( 0 ), y( 0 ) {}
Point( const int a, const LL b ): x( a ), y( b ) {}
inline Point operator + ( const Point& p ) const {
return { x + p.x, y + p.y };
}
inline Point operator - ( const Point& p ) const {
return { x - p.x, y - p.y };
}
inline LL operator ^ ( const Point& p ) const {
return x * p.y - y * p.x;
}
inline double angle() const {
double t = atan2( y, x );
return t < 0 ? t + 2 * PI : t;
}
}; typedef Point Vector;
typedef std::vector<Point> Convex; inline Convex minkowskiSum( const Point& ap, const Point& bp,
const Convex& A, const Convex& B ) {
int n = int( A.size() ), m = int( B.size() );
static Convex ret; ret.clear(), ret.resize( n + m + 1 ); ret[0] = ap + bp;
int i = 0, j = 0, k = 0;
while ( i < n && j < m ) {
ret[k + 1] = ( ret[k] + ( ( A[i] ^ B[j] ) > 0 ? A[i++] : B[j++] ) );
++k;
}
while ( i < n ) ret[k + 1] = ret[k] + A[i++], ++k;
while ( j < m ) ret[k + 1] = ret[k] + B[j++], ++k;
return ret;
} } using namespace PGP; struct Atom {
std::vector<Point> f; friend inline Atom operator + ( const Atom& u, const Atom& v ) {
static std::vector<Point> ur[12], vr[12]; static Atom ret;
static Point up[12], vp[12];
ret.f.clear(), ret.f.resize( u.f.size() + v.f.size() - 1 );
rep ( i, 0, int( ret.f.size() ) - 1 ) ret.f[i].x = i;
rep ( i, 0, 11 ) ur[i].clear(), vr[i].clear(); rep ( i, 0, int( u.f.size() ) - 1 ) ur[i % 12].push_back( u.f[i] );
rep ( i, 0, int( v.f.size() ) - 1 ) vr[i % 12].push_back( v.f[i] );
rep ( i, 0, 11 ) {
std::reverse( ur[i].begin(), ur[i].end() );
std::reverse( vr[i].begin(), vr[i].end() ); int n = int( ur[i].size() );
if ( n ) {
up[i] = ur[i][0];
rep ( j, 0, n - 2 ) ur[i][j] = ur[i][j + 1] - ur[i][j];
ur[i][n - 1] = up[i] - ur[i][n - 1];
} n = int( vr[i].size() );
if ( n ) {
vp[i] = vr[i][0];
rep ( j, 0, n - 2 ) vr[i][j] = vr[i][j + 1] - vr[i][j];
vr[i][n - 1] = vp[i] - vr[i][n - 1];
}
} rep ( i, 0, 11 ) if ( !ur[i].empty() ) {
rep ( j, 0, 11 ) if ( !vr[j].empty() ) {
const auto&& cvx( minkowskiSum( up[i], vp[j], ur[i], vr[j] ) );
for ( size_t k = 0; k < cvx.size(); ++k ) {
chkmax( ret.f[cvx[k].x].y, cvx[k].y );
}
}
}
return ret;
}
}; inline Atom solve( const int l, const int r ) {
if ( l == r ) {
int k = rint(), v;
static Atom ret; ret.f.resize( k );
rep ( i, 1, k ) ret.f[i - 1] = { i - 1, rint() };
return ret;
}
int mid = l + r >> 1;
const Atom &&u( solve( l, mid ) ), &&v( solve( mid + 1, r ) );
return u + v;
} int main() {
freopen( "fake.in", "r", stdin );
freopen( "fake.out", "w", stdout ); const Atom&& ans( solve( 1, rint() ) );
for ( const auto& u: ans.f ) wint( u.y ), putchar( ' ' );
putchar( '\n' );
return 0;
}

Solution -「多校联训」假人的更多相关文章

  1. Solution -「多校联训」排水系统

    \(\mathcal{Description}\)   Link.   在 NOIP 2020 A 的基础上,每条边赋权值 \(a_i\),随机恰好一条边断掉,第 \(i\) 条段的概率正比于 \(a ...

  2. Solution -「多校联训」I Love Random

    \(\mathcal{Description}\)   给定排列 \(\{p_n\}\),可以在其上进行若干次操作,每次选取 \([l,r]\),把其中所有元素变为原区间最小值,求能够得到的所有不同序 ...

  3. Solution -「多校联训」签到题

    \(\mathcal{Description}\)   Link.   给定二分图 \(G=(X\cup Y,E)\),求对于边的一个染色 \(f:E\rightarrow\{1,2,\dots,c\ ...

  4. Solution -「多校联训」朝鲜时蔬

    \(\mathcal{Description}\)   Link.   破案了,朝鲜时蔬 = 超现实树!(指写得像那什么一样的题面.   对于整数集 \(X\),定义其 好子集 为满足 \(Y\sub ...

  5. Solution -「多校联训」消失的运算符

    \(\mathcal{Description}\)   Link.   给定长度为 \(n\) 的合法表达式序列 \(s\),其中数字仅有一位正数,运算符仅有 - 作为占位.求将其中恰好 \(k\) ...

  6. Solution -「多校联训」古老的序列问题

    \(\mathcal{Description}\)   Link.   给定序列 \(\{a_n\}\),和 \(q\) 次形如 \([L,R]\) 的询问,每次回答 \[\sum_{[l,r]\su ...

  7. Solution -「多校联训」Sample

    \(\mathcal{Description}\)   Link   (稍作简化:)对于变量 \(p_{1..n}\),满足 \(p_i\in[0,1],~\sum p_i=1\) 时,求 \(\ma ...

  8. Solution -「多校联训」光影交错

    \(\mathcal{Description}\)   Link.   一个游戏包含若干次卡牌抽取,每次以 \(p_l\) 的概率得到 \(+1\),\(p_d\) 的概率得到 \(-1\),否则得到 ...

  9. Solution -「多校联训」数学考试

    \(\mathcal{Description}\)   Link.   给定 \(n\) 个函数,第 \(i\) 个有 \(f_i(x)=a_ix^3+b_ix^2+cx_i+d~(x\in[l_i, ...

随机推荐

  1. SYCOJ#111、吉祥物

    题目-吉祥物 (shiyancang.cn) 1 #include<bits/stdc++.h> 2 using namespace std; 3 int n,x; 4 int pos(i ...

  2. Kube-OVN 1.2.0发布,携手社区成员打造高性能容器网络

    Kube-OVN 1.2.0 新版本如期而至,支持 Vlan 和 OVS-DPDK 两种类型的高性能网络接口.本次发布得益于社区的壮大,感谢Intel爱尔兰开发团队与锐捷网络开发团队持续积极参与Kub ...

  3. LATEX图片位置

    常用选项[htbp]是浮动格式: -『h』当前位置.将图形放置在正文文本中给出该图形环境的地方.如果本页所剩的页面不够,这一参数将不起作用. -『t』顶部.将图形放置在页面的顶部. -『b』底部.将图 ...

  4. NPOI处理Excel

    using NPOI; using NPOI.XSSF.UserModel; using NPOI.SS.UserModel; using NPOI.HSSF.UserModel; NPOI.SS.U ...

  5. 【记录一个问题】铁威马NAS存储,当使用time machine备份的时候,如果再使用手机备份,会导致time machine备份中断

    如题 傻机器,无法做到并行备份!

  6. SpringCloud之使用Zookeeper作为注册中心

    SpringCloud之使用Zookeeper作为注册中心 linux安装zookeeper 安装zookeeper 关闭linux防火墙 启动zookeeper 1 创建项目导入依赖和配置文件 &l ...

  7. 第05讲:Flink SQL & Table 编程和案例

    Flink系列文章 第01讲:Flink 的应用场景和架构模型 第02讲:Flink 入门程序 WordCount 和 SQL 实现 第03讲:Flink 的编程模型与其他框架比较 第04讲:Flin ...

  8. python采用json.dump和json.load存储数据

    #!/usr/bin/python # -*- coding: UTF-8 -*- import json numbers = [2,3,4,7,11,13] filename = 'numbers. ...

  9. JavaIo流入门篇之字节流基本使用。

    一 基本知识了解(  字节流, 字符流, byte,bit是啥?) /* java中字节流和字符流之前有接触过,但是一直没有深入的学习和了解. 今天带着几个问题,简单的使用字节流的基本操作. 1 什么 ...

  10. 6. java IO 流

    一.流的分类: * 1.操作数据单位:字节流.字符流 * 2.数据的流向:输入流.输出流 * 3.流的角色:节点流.处理流 *二.流的体系结构 * 抽象基类               节点流(或文件 ...