\(\mathcal{Description}\)

  Link.

  给定 \(n\) 个函数,第 \(i\) 个有 \(f_i(x)=a_ix^3+b_ix^2+cx_i+d~(x\in[l_i,r_i]\cap\mathbb Z)\),还有 \(m\) 条形如 \(x_u\le x_v+d\) 的限制,请最大化 \(\sum_{i=1}^nf_i(x_i)\) 或声明无解。

  \(n,|l_i|,|r_i|\le 100\)。

\(\mathcal{Solution}\)

  很久没遇到了,压根儿没往网络流方面想 qwq。

  对于每个 \(f_i\),拉一条代表 \(f_i(l_i..r_i)\) 的链,边权就是某个 \(f\) 的值的相反数;限制条件方便转化为最小割,之后直接跑最小割即可。

  \(\mathcal O(\operatorname{Dinic}(\sum(r-l),m\sum(r-l)))\)。

\(\mathcal{Code}\)

/*~Rainybunny~*/

#include <queue>
#include <cstdio> #define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i ) #define int long long inline int imin( const int a, const int b ) { return a < b ? a : b; } const int MAXN = 100, IINF = 1ll << 50, BASE = 7e6;
int n, m, lid[MAXN + 5]; struct Function {
int a, b, c, d, l, r;
inline void read() {
scanf( "%lld %lld %lld %lld %lld %lld" , &a, &b, &c, &d, &l, &r );
}
inline int operator () ( const int x ) const {
return d + x * ( c + x * ( b + x * a ) );
}
} fc[MAXN + 5]; struct FlowGraph {
static const int MAXND = 2e4 + 10, MAXEG = 2e5;
int ecnt, bound, S, T, head[MAXND];
struct Edge { int to, flw, nxt; } graph[MAXEG * 2];
int ds[MAXND], curh[MAXND]; FlowGraph(): ecnt( 1 ) {} inline void clear() {
ecnt = 1;
rep ( i, 0, bound ) head[i] = 0;
} inline void operator () ( const int s, const int t, const int f ) {
graph[++ecnt] = { t, f, head[s] }, head[s] = ecnt;
graph[++ecnt] = { s, 0, head[t] }, head[t] = ecnt;
} inline bool bfs() {
static std::queue<int> que;
rep ( i, 0, bound ) ds[i] = IINF;
que.push( S ), ds[S] = 0;
while ( !que.empty() ) {
int u = que.front(); que.pop();
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( graph[i].flw && ds[u] + 1 < ds[v = graph[i].to] ) {
ds[v] = ds[u] + 1, que.push( v );
}
}
}
return ds[T] != IINF;
} inline int dfs( const int u, int iflw ) {
if ( u == T ) return iflw;
int oflw = 0;
for ( int& i = curh[u], v; i; i = graph[i].nxt ) {
if ( graph[i].flw && ds[u] + 1 == ds[v = graph[i].to] ) {
int tmp = dfs( v, imin( iflw - oflw, graph[i].flw ) );
oflw += tmp, graph[i].flw -= tmp, graph[i ^ 1].flw += tmp;
if ( iflw == oflw ) break;
}
}
if ( !oflw ) ds[u] = IINF;
return oflw;
} inline int calc( const int s, const int t ) {
int ret = 0; S = s, T = t;
while ( bfs() ) {
rep ( i, 0, bound ) curh[i] = head[i];
ret += dfs( S, IINF );
}
return ret;
}
} G; signed main() {
freopen( "sleep.in", "r", stdin );
freopen( "sleep.out", "w", stdout ); int Q; scanf( "%lld", &Q );
while ( Q-- ) {
scanf( "%lld %lld", &n, &m ), G.clear();
int S = 0, T = 1, node = 1;
rep ( i, 1, n ) {
fc[i].read();
G( S, lid[i] = ++node, IINF );
rep ( j, fc[i].l, fc[i].r ) {
G( node, node + 1, BASE - fc[i]( j ) ), ++node;
}
G( node, T, IINF );
}
rep ( i, 1, m ) {
int u, v, d; scanf( "%lld %lld %lld", &u, &v, &d );
rep ( x, fc[u].l, fc[u].r ) {
if ( fc[v].l <= x - d && x - d <= fc[v].r ) {
G( lid[u] + x - fc[u].l, lid[v] + x - d - fc[v].l, IINF );
} else if ( x - d > fc[v].r ) {
G( lid[u] + x - fc[u].l, T, IINF );
}
}
}
G.bound = node;
int ans = -G.calc( S, T );
if ( ans <= -IINF ) puts( "mei ji ge" );
else printf( "%lld\n", ans + n * BASE );
}
return 0;
}

Solution -「多校联训」数学考试的更多相关文章

  1. Solution -「多校联训」排水系统

    \(\mathcal{Description}\)   Link.   在 NOIP 2020 A 的基础上,每条边赋权值 \(a_i\),随机恰好一条边断掉,第 \(i\) 条段的概率正比于 \(a ...

  2. Solution -「多校联训」I Love Random

    \(\mathcal{Description}\)   给定排列 \(\{p_n\}\),可以在其上进行若干次操作,每次选取 \([l,r]\),把其中所有元素变为原区间最小值,求能够得到的所有不同序 ...

  3. Solution -「多校联训」签到题

    \(\mathcal{Description}\)   Link.   给定二分图 \(G=(X\cup Y,E)\),求对于边的一个染色 \(f:E\rightarrow\{1,2,\dots,c\ ...

  4. Solution -「多校联训」朝鲜时蔬

    \(\mathcal{Description}\)   Link.   破案了,朝鲜时蔬 = 超现实树!(指写得像那什么一样的题面.   对于整数集 \(X\),定义其 好子集 为满足 \(Y\sub ...

  5. Solution -「多校联训」消失的运算符

    \(\mathcal{Description}\)   Link.   给定长度为 \(n\) 的合法表达式序列 \(s\),其中数字仅有一位正数,运算符仅有 - 作为占位.求将其中恰好 \(k\) ...

  6. Solution -「多校联训」假人

    \(\mathcal{Description}\)   Link.   一种物品有 长度 和 权值 两种属性,现给定 \(n\) 组物品,第 \(i\) 组有 \(k_i\) 个,分别为 \((1,a ...

  7. Solution -「多校联训」古老的序列问题

    \(\mathcal{Description}\)   Link.   给定序列 \(\{a_n\}\),和 \(q\) 次形如 \([L,R]\) 的询问,每次回答 \[\sum_{[l,r]\su ...

  8. Solution -「多校联训」Sample

    \(\mathcal{Description}\)   Link   (稍作简化:)对于变量 \(p_{1..n}\),满足 \(p_i\in[0,1],~\sum p_i=1\) 时,求 \(\ma ...

  9. Solution -「多校联训」光影交错

    \(\mathcal{Description}\)   Link.   一个游戏包含若干次卡牌抽取,每次以 \(p_l\) 的概率得到 \(+1\),\(p_d\) 的概率得到 \(-1\),否则得到 ...

随机推荐

  1. div背景css样式笔记

    <style type="text/css"> .div1 { width: 1024px; height: 100%; margin: 0 auto; /*backg ...

  2. nuxt 项目安装及环境配置

    babel篇 在package.json中添加--exec babel-node 如果需要编译es6,我们需要设置presets包含es2015,也就是预先加载es6编译的模块. 如果需要编译es7, ...

  3. FileReader()读取文件、图片上传预览

    前言 FileReader 对象允许Web应用程序异步读取存储在用户计算机上的文件(或原始数据缓冲区)的内容,使用 File 或 Blob 对象指定要读取的文件或数据. 其中File对象可以是来自用户 ...

  4. RootersCTF2019 I ♥ Flask

    最近也是一直在做ssti方面的题目,我发现了两款比较好用的工具,一个是arjun(用来探测参数),另一个是Tplmap(用来探测ssti漏洞),我们这里以一道题目为例来演示一下 题目 我们拿到题目 分 ...

  5. C#进程调用FFmpeg操作音视频

    项目背景 因为公司需要对音视频做一些操作,比如说对系统用户的发音和背景视频进行合成,以及对多个音视频之间进行合成,还有就是在指定的源背景音频中按照对应的规则在视频的多少秒钟内插入一段客户发音等一些复杂 ...

  6. 服务监控 | 彻底搞懂Dropwizard Metrics一篇就够了

    Metrics是一个提供服务性能检测工具的Java类库,它提供了功能强大的性能指标工具库用于度量生产环境中的各关键组件性能. 度量类型 Metrics提供了以下几种基本的度量类型: Gauge:用于提 ...

  7. Android官方文档翻译 三 1.1Creating an Android Project

    Creating an Android Project 创建一个Android项目 An Android project contains all the files that comprise th ...

  8. 《剑指offer》面试题55 - II. 平衡二叉树

    问题描述 输入一棵二叉树的根节点,判断该树是不是平衡二叉树.如果某二叉树中任意节点的左右子树的深度相差不超过1,那么它就是一棵平衡二叉树. 示例 1: 给定二叉树 [3,9,20,null,null, ...

  9. INFO client.RMProxy: Connecting to ResourceManager at hadoop

    1.查看防火墙是否没关闭. 2.用jps 命令查看是否没有启动resourcemanager

  10. 【刷题-PAT】A1108 Finding Average (20 分)

    1108 Finding Average (20 分) The basic task is simple: given N real numbers, you are supposed to calc ...