在面试中遇到了这道题:如何实现多个升序链表的合并。这是 LeetCode 上的一道原题,题目具体如下:

用归并实现合并 K 个升序链表

LeetCode 23. 合并K个升序链表

给你一个链表数组,每个链表都已经按升序排列。

请你将所有链表合并到一个升序链表中,返回合并后的链表。

示例 1:

输入:lists = [[1,4,5],[1,3,4],[2,6]]
输出:[1,1,2,3,4,4,5,6]
解释:链表数组如下:
[
1->4->5,
1->3->4,
2->6
]
将它们合并到一个有序链表中得到。
1->1->2->3->4->4->5->6

这题可以用归并的思想来实现,我们两两链表合并,到最后合成所有的链表。代码如下:

public ListNode mergeKLists(ListNode[] lists) {
return merge(lists, 0, lists.length - 1);
} public ListNode merge(ListNode[] lists, int left, int right) {
if(left == right) {
return lists[left];
}
if (left > right) {
return null;
}
int mid = (left + right) >> 1;
return mergeTwoLists(merge(lists, left, mid), merge(lists, mid + 1, right));
} public ListNode mergeTwoLists(ListNode l1, ListNode l2) {
if(l1 == null) {
return l2;
}
if(l2 == null) {
return l1;
}
ListNode head = new ListNode(-1);
ListNode cur = head;
while(l1 != null && l2 != null) {
if(l1.val < l2.val) {
cur.next = l1;
l1 = l1.next;
}else {
cur.next = l2;
l2 = l2.next;
}
cur = cur.next;
}
cur.next = l1 == null ? l2:l1;
return head.next;
}

现在我们来回顾一下归并排序的知识

一、归并排序

1. 归并排序的定义

  • 基本思路:借助外部空间,合并两个有序数组/序列,得到更长的数组
  • 算法思想:分而治之

比如对于数组[8,4,5,7,1,3,6,2]的排序:整体的过程是这样:先“分”成小问题,再进行“治”操作

2.归并排序算法代码实现

先来看看归并排序实现一个数组[8,4,5,7,1,3,6,2]的排序,难以理解的是合并相邻有序子序列这块,我们来看 [4,5,7,8] 和[1,2,3,6]这两个已经有序的子序列的合并:图片转自这篇博客图解排序算法(四)之归并排序

public int[] sortArray(int[] nums) {
int[] temp = new int[nums.length];
merge(nums, 0, nums.length - 1, temp);
return nums;
} public void merge(int[] nums, int left, int right, int[] temp) {
if(left < right) {
int mid = (left + right) >> 1;
merge(nums, left, mid, temp);
merge(nums, mid + 1, right, temp);
mergeSort(nums, left, mid, right, temp);
}
} public void mergeSort(int[] nums, int left, int mid, int right, int[] temp) {
int i = left;
int j = mid + 1;
for(int k = left; k <= right; k++) {
temp[k] = nums[k];
}
for(int k = left; k <= right; k++) {
//当 i 指针走完时,将 j 指针部分复制到数组中
if(i == mid +1) {
nums[k] = temp[j];
j++;
//若 j 指针走完,将 i 指针部分复制到最后数组中
}else if(j == right + 1) {
nums[k] = temp[i];
i++;
//这里的 = 是保持排序算法的稳定性,即排序后相等的数据原有顺序不变
}else if(temp[i] <= temp[j]) {
nums[k] = temp[i];
i++;
}else {
nums[k] = temp[j];
j++;
}
}
}

二、归并排序的一些经典题

1.LeetCode 88. 合并两个有序数组

给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。

请你 合并 nums2 到 nums1 中,使合并后的数组同样按 非递减顺序 排列。

注意:最终,合并后数组不应由函数返回,而是存储在数组 nums1 中。为了应对这种情况,nums1 的初始长度为 m + n,其中前 m 个元素表示应合并的元素,后 n 个元素为 0 ,应忽略。nums2 的长度为 n 。

示例 1:

输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3

输出:[1,2,2,3,5,6]

解释:需要合并 [1,2,3] 和 [2,5,6] 。

合并结果是 [1,2,2,3,5,6] ,其中斜体加粗标注的为 nums1 中的元素。

这道题可以用归并排序的思想来完成,这里就是用的“治”操作:

public void merge(int[] nums1, int m, int[] nums2, int n) {
int[] temp = new int[m+n];
for(int t = 0; t < m; t++) {
temp[t] = nums1[t];
}
for(int t = m, g = 0; t < m + n & g < n; t++,g++) {
temp[t] = nums2[g];
}
int i = 0;
int j = m;
for(int k = 0; k < m + n; k++) {
if(i == m) {
nums1[k] = temp[j];
j++;
} else if(j == m + n) {
nums1[k] = temp[i];
i++;
} else if(temp[i] <= temp[j]) {
nums1[k] = temp[i];
i++;
} else {
nums1[k] = temp[j];
j++;
}
}
}

2.剑指 Offer 51. 数组中的逆序对

在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数。

示例 1:

输入: [7,5,6,4]

输出: 5

这题实际上还是利用数组中的元素两两配对比较,也就是分治处理,不过这次是比较大小后的计数。

public int reversePairs(int[] nums) {
int len = nums.length;
if(len < 2) {
return 0;
}
int[] temp = new int[len];
return mergePairs(nums, 0, len - 1, temp);
} public int mergePairs(int[] nums, int left, int right, int[] temp) {
//如果是无参void 则可写成 return; 或者不写
if(left >= right) {
return 0;
}
int mid = (left + right) >> 1;
int leftCount = mergePairs(nums, left, mid, temp);
int rightCount = mergePairs(nums, mid + 1, right, temp);
int reverseCount = merge(nums, left, mid, right, temp);
//最后记得返回三者之和
return leftCount + rightCount + reverseCount;
} public int merge(int[] nums, int left, int mid, int right, int[] temp) {
int i = left;
int j = mid + 1;
int count = 0;
for(int t = left; t <= right; t++) {
temp[t] = nums[t];
}
for(int k = left; k <= right; k++) {
if(i == mid + 1) {
nums[k] = temp[j++];
} else if(j == right + 1 || temp[i] <= temp[j]) {
nums[k] = temp[i++];
} else {
nums[k] = temp[j++];
count += mid - i + 1;
}
}
return count;
}

这里要说一下逆序数的求法:前提是两个序列有序

如果有两个有序序列:

Seq1:3 4 5

Seq2:2 6 8 9

对于序列seq1中的某个数a[i],序列seq2中的某个数a[j]:

  • 如果a[i]<a[j],没有逆序数
  • 如果a[i]>a[j],那么逆序数为seq1 中a[i]后边元素的个数(包括a[i]),即len1 -i+1。

3.LeetCode 315. 计算右侧小于当前元素的个数

给你一个整数数组 nums ,按要求返回一个新数组 counts 。数组 counts 有该性质: counts[i] 的值是 nums[i] 右侧小于 nums[i] 的元素的数量。

示例 1:

输入:nums = [5,2,6,1]
输出:[2,1,1,0]
解释:
5 的右侧有 2 个更小的元素 (2 和 1)
2 的右侧仅有 1 个更小的元素 (1)
6 的右侧有 1 个更小的元素 (1)
1 的右侧有 0 个更小的元素

这题和第二题类似,但是这里要解决定位的问题,因为我们的元素节点在归并排序的时候是会移动的,所以需要设置一个索引数组来给这些元素定位。但是求逆序数用的是第二种方法:在前有序数组出列时,计算后有序数组中已经出列的元素个数。

public List<Integer> countSmaller(int[] nums) {
int len = nums.length;
List<Integer> res = new ArrayList<>();
if(len < 2) {
res.add(0);
return res;
}
int[] temp = new int[len];
int[] indexes = new int[len];
int[] result = new int[len];
for(int i = 0; i < len; i++) {
indexes[i] = i;
}
merge(nums, 0, len - 1, temp, indexes, result);
for(int i = 0; i < len; i++) {
res.add(result[i]);
}
return res;
} public void merge(int[] nums, int left, int right, int[] temp, int[] indexes, int[] result) {
if(left >= right) {
return;
}
int mid = (left + right) >> 1;
merge(nums,left, mid, temp,indexes,result);
merge(nums,mid+1,right,temp,indexes,result);
mergeSort(nums,left,right,mid,temp,indexes,result); }
public void mergeSort(int[] nums, int left, int right, int mid, int[] temp, int[] indexes, int[] result) {
int i = left;
int j = mid + 1;
for(int t = left; t <= right; t++) {
temp[t] = indexes[t];
}
for(int k = left; k <= right; k++) {
if(i == mid + 1) {
indexes[k] = temp[j++];
} else if(j == right + 1) {
indexes[k] = temp[i++];
result[indexes[k]] += right - mid;
} else if(nums[temp[i]] <= nums[temp[j]]) {
indexes[k] = temp[i++];
result[indexes[k]] += j - mid - 1;
} else {
indexes[k] = temp[j++];
}
}
}

归并排序的思想很重要,在解决负责问题的分治思想有利于将大问题分解。从而更快的解决问题。

参考资料

https://www.cnblogs.com/chengxiao/p/6194356.html

https://leetcode-cn.com/problems/count-of-smaller-numbers-after-self/solution/gui-bing-pai-xu-suo-yin-shu-zu-python-dai-ma-java-/

浅谈归并排序:合并 K 个升序链表的归并解法的更多相关文章

  1. [LeetCode题解]23. 合并K个升序链表 | 分治 + 递归

    方法一:分治 + 递归 解题思路 在21. 合并两个有序链表,我们知道如何合并两个有序链表.而本题是合并 k 个有序链表,可以通过大问题拆分成小问题解决,即把 k 个链表,拆分成 k/2 个链表组,俩 ...

  2. 【LeetCode】23. Merge k Sorted Lists 合并K个升序链表

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 个人公众号:负雪明烛 本文关键词:合并,链表,单链表,题解,leetcode, 力扣,Py ...

  3. LeetCode-023-合并K个升序链表

    合并K个升序链表 题目描述:给你一个链表数组,每个链表都已经按升序排列. 请你将所有链表合并到一个升序链表中,返回合并后的链表. 示例说明请见LeetCode官网. 来源:力扣(LeetCode) 链 ...

  4. leetcode python 012 hard 合并k个有序链表

    #[LeetCode] Merge k Sorted Lists 合并k个有序链表(升序) import numpy as npimport time class Node(object):    d ...

  5. 23.合并k个有序链表

    合并 k 个排序链表,返回合并后的排序链表.请分析和描述算法的复杂度. 示例: 输入: [   1->4->5,   1->3->4,   2->6 ] 输出: 1-&g ...

  6. [LeetCode] Merge k Sorted Lists 合并k个有序链表

    Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity. 这 ...

  7. [LeetCode] 23. 合并K个排序链表

    题目链接: https://leetcode-cn.com/problems/merge-k-sorted-lists/ 题目描述: 合并 k 个排序链表,返回合并后的排序链表.请分析和描述算法的复杂 ...

  8. [Swift]LeetCode23. 合并K个排序链表 | Merge k Sorted Lists

    Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity. E ...

  9. 合并K个排序链表

    合并 k 个排序链表,返回合并后的排序链表.请分析和描述算法的复杂度. 示例: 输入: [   1->4->5,   1->3->4,   2->6 ] 输出: 1-&g ...

随机推荐

  1. LINUX学习-Nginx服务器的反向代理和负载均衡

    一.准备环境 1.准备3台服务器: 1)192.168.88.10 --Nginx服务器 2)192.168.88.20 --apache服务器 3)192.168.88.30 --apache服务器 ...

  2. Bootstrap实战 - 响应式布局

    一.介绍 响应式布局就是一个网站能够兼容多个终端,而不是为每个终端做一个特定的版本.这个概念是为解决移动互联网浏览而诞生的. 导航栏与轮播在大部分网站的头部占很高的比重,特别是导航栏,扮演着网站地图的 ...

  3. Python多环境管理神器(pipenv)

    pipenv 参考官网:https://pipenv.pypa.io/ pipenv 是一款比较新的包管理工具,其借鉴了 javascript 的 npm 和 PHP 的 composer 等理念,通 ...

  4. MCU软件最佳实践——独立按键

    1. 引子 在进行mcu驱动和应用开发时,经常会遇到独立按键驱动的开发,独立按键似乎是每一个嵌入式工程师的入门必修课.笔者翻阅了许多书籍(包括上大学时候用的书籍)同时查阅了网上许多网友的博客,无一例外 ...

  5. Pod:Kubernetes最小执行单元

    Pod基本概念理解 Pod是什么 Pod 是 Kubernetes 应用程序的基本执行单元,它是 Kubernetes 对象模型中创建或部署的最小和最简单的单元. 一个Pod可以包括一个或者多个容器. ...

  6. 【经验总结】CodeBlocks使用mingw64

    CodeBlocks使用 标签:c++ 一.安装并配置mingw-w64 使用中发现CB默认的编译器版本过低,c++11的一些东西无法使用,比如string中的stoi函数,因此尝试安装新版本的编译器 ...

  7. python技巧一行命令搞定局域网共享

    python超强玩法--一行命令搞定局域网共享 ​ 今天刷到python的一个新玩法,利用python自带的http服务,快速创建局域网共享服务,命令如下: python -m thhp.server ...

  8. Node内部架构图

    1.Node内部架构图 先来看一下Node节点的内部实现架构图. 首先最上层入口是Restful风格和javaTcp风格的API入口,RestFul请求映射到处理器RestControl.JavaAp ...

  9. django_url配置

    前言 我们在浏览器访问一个网页是通过url地址去访问的,django管理url配置是在urls.py文件.当一个页面数据很多时候,通过会有翻页的情况,那么页数是不固定的,如:page=1.也就是url ...

  10. Django settings.py配置文件

    import os BASE_DIR = os.path.dirname(os.path.dirname(__file__)) 这里用到了python中一个神奇的变量 file 这个变量可以获取到当前 ...