摘要:本文先介绍下LFS文件系统结构体的结构体和全局变量,然后分析下LFS文件操作接口。

本文分享自华为云社区《# 鸿蒙轻内核M核源码分析系列二一 02 文件系统LittleFS》,作者:zhushy 。

LittleFS是一个小型的Flash文件系统,它结合日志结构(log-structured)文件系统和COW(copy-on-write)文件系统的思想,以日志结构存储元数据,以COW结构存储数据。这种特殊的存储方式,使LittleFS具有强大的掉电恢复能力(power-loss resilience)。分配COW数据块时LittleFS采用了名为统计损耗均衡的动态损耗均衡算法,使Flash设备的寿命得到有效保障。同时LittleFS针对资源紧缺的小型设备进行设计,具有极其有限的ROM和RAM占用,并且所有RAM的使用都通过一个可配置的固定大小缓冲区进行分配,不会随文件系统的扩大占据更多的系统资源。当在一个资源非常紧缺的小型设备上,寻找一个具有掉电恢复能力并支持损耗均衡的Flash文件系统时,LittleFS是一个比较好的选择。本文先介绍下LFS文件系统结构体的结构体和全局变量,然后分析下LFS文件操作接口。文中所涉及的源码,均可以在开源站点https://gitee.com/openharmony/kernel_liteos_m 获取。

1、LFS文件系统结构体介绍

会分2部分来介绍结构体部分,先介绍LittleFS文件系统的结构体,然后介绍LiteOS-M内核中提供的和LittleFS相关的一些结构体。

1.1 LittleFS的枚举结构体

在openharmony/third_party/littlefs/lfs.h头文件中定义LittleFS的枚举、结构体,我们先简单了解下,后文会使用到的。

枚举lfs_type定义文件类型,了解下普通文件LFS_TYPE_REG和目录LFS_TYPE_DIR即可。枚举lfs_open_flags定义文件系统的打开标签属性信息,需要熟悉常用的只读LFS_O_RDONLY、只写LFS_O_WRONLY、读写LFS_O_RDWR等等。

// File types
enum lfs_type {
// file types
LFS_TYPE_REG = 0x001,
LFS_TYPE_DIR = 0x002, // internally used types
LFS_TYPE_SPLICE = 0x400,
LFS_TYPE_NAME = 0x000,
LFS_TYPE_STRUCT = 0x200,
LFS_TYPE_USERATTR = 0x300,
LFS_TYPE_FROM = 0x100,
LFS_TYPE_TAIL = 0x600,
LFS_TYPE_GLOBALS = 0x700,
LFS_TYPE_CRC = 0x500, // internally used type specializations
LFS_TYPE_CREATE = 0x401,
LFS_TYPE_DELETE = 0x4ff,
LFS_TYPE_SUPERBLOCK = 0x0ff,
LFS_TYPE_DIRSTRUCT = 0x200,
LFS_TYPE_CTZSTRUCT = 0x202,
LFS_TYPE_INLINESTRUCT = 0x201,
LFS_TYPE_SOFTTAIL = 0x600,
LFS_TYPE_HARDTAIL = 0x601,
LFS_TYPE_MOVESTATE = 0x7ff, // internal chip sources
LFS_FROM_NOOP = 0x000,
LFS_FROM_MOVE = 0x101,
LFS_FROM_USERATTRS = 0x102,
}; // File open flags
enum lfs_open_flags {
// open flags
LFS_O_RDONLY = 1, // Open a file as read only
#ifndef LFS_READONLY
LFS_O_WRONLY = 2, // Open a file as write only
LFS_O_RDWR = 3, // Open a file as read and write
LFS_O_CREAT = 0x0100, // Create a file if it does not exist
LFS_O_EXCL = 0x0200, // Fail if a file already exists
LFS_O_TRUNC = 0x0400, // Truncate the existing file to zero size
LFS_O_APPEND = 0x0800, // Move to end of file on every write
#endif // internally used flags
#ifndef LFS_READONLY
LFS_F_DIRTY = 0x010000, // File does not match storage
LFS_F_WRITING = 0x020000, // File has been written since last flush
#endif
LFS_F_READING = 0x040000, // File has been read since last flush
#ifndef LFS_READONLY
LFS_F_ERRED = 0x080000, // An error occurred during write
#endif
LFS_F_INLINE = 0x100000, // Currently inlined in directory entry
};

结构体lfs_t是littlefs文件系统类型结构体,lfs文件系统操作接口的第一个参数一般为这个结构体。成员变量struct lfs_config *cfg下文会涉及,其他成员变量可以暂不了解。

// The littlefs filesystem type
typedef struct lfs {
lfs_cache_t rcache;
lfs_cache_t pcache; lfs_block_t root[2];
struct lfs_mlist {
struct lfs_mlist *next;
uint16_t id;
uint8_t type;
lfs_mdir_t m;
} *mlist;
uint32_t seed; lfs_gstate_t gstate;
lfs_gstate_t gdisk;
lfs_gstate_t gdelta; struct lfs_free {
lfs_block_t off;
lfs_block_t size;
lfs_block_t i;
lfs_block_t ack;
uint32_t *buffer;
} free; const struct lfs_config *cfg;
lfs_size_t name_max;
lfs_size_t file_max;
lfs_size_t attr_max; #ifdef LFS_MIGRATE
struct lfs1 *lfs1;
#endif
} lfs_t;

结构体lfs_file_t、lfs_dir_t分别是littlefs的文件和目录类型结构体,暂不需要关心成员变量细节,知道结构体的用途即可。

// littlefs directory type
typedef struct lfs_dir {
struct lfs_dir *next;
uint16_t id;
uint8_t type;
lfs_mdir_t m; lfs_off_t pos;
lfs_block_t head[2];
} lfs_dir_t; // littlefs file type
typedef struct lfs_file {
struct lfs_file *next;
uint16_t id;
uint8_t type;
lfs_mdir_t m; struct lfs_ctz {
lfs_block_t head;
lfs_size_t size;
} ctz; uint32_t flags;
lfs_off_t pos;
lfs_block_t block;
lfs_off_t off;
lfs_cache_t cache; const struct lfs_file_config *cfg;
} lfs_file_t;

结构体lfs_config用于提供初始化littlefs文件系统的一些配置。其中.read,.prog,.erase,.sync分别对应该硬件平台上的底层的读写\擦除\同步等接口。

  • read_size 每次读取的字节数,可以比物理读单元大以改善性能,这个数值决定了读缓存的大小,但值太大会带来更多的内存消耗。
  • prog_size 每次写入的字节数,可以比物理写单元大以改善性能,这个数值决定了写缓存的大小,必须是read_size的整数倍,但值太大会带来更多的内存消耗。
  • block_size 每个擦除块的字节数,可以比物理擦除单元大,但此数值应尽可能小因为每个文件至少会占用一个块。必须是prog_size的整数倍。
  • block_count 可以被擦除的块数量,这取决于块设备的容量及擦除块的大小。
// Configuration provided during initialization of the littlefs
struct lfs_config {
// Opaque user provided context that can be used to pass
// information to the block device operations
void *context; int (*read)(const struct lfs_config *c, lfs_block_t block,
lfs_off_t off, void *buffer, lfs_size_t size);
int (*prog)(const struct lfs_config *c, lfs_block_t block,
lfs_off_t off, const void *buffer, lfs_size_t size);
int (*erase)(const struct lfs_config *c, lfs_block_t block);
int (*sync)(const struct lfs_config *c); #ifdef LFS_THREADSAFE
int (*lock)(const struct lfs_config *c);
int (*unlock)(const struct lfs_config *c);
#endif lfs_size_t read_size;
lfs_size_t prog_size;
lfs_size_t block_size;
lfs_size_t block_count; int32_t block_cycles;
lfs_size_t cache_size;
lfs_size_t lookahead_size;
void *read_buffer;
void *prog_buffer;
void *lookahead_buffer;
lfs_size_t name_max;
lfs_size_t file_max;
lfs_size_t attr_max;
lfs_size_t metadata_max;
};

结构体lfs_info用于维护文件信息,包含文件类型,大小和文件名信息。

// File info structure
struct lfs_info {
// Type of the file, either LFS_TYPE_REG or LFS_TYPE_DIR
uint8_t type; // Size of the file, only valid for REG files. Limited to 32-bits.
lfs_size_t size; // Name of the file stored as a null-terminated string. Limited to
// LFS_NAME_MAX+1, which can be changed by redefining LFS_NAME_MAX to
// reduce RAM. LFS_NAME_MAX is stored in superblock and must be
// respected by other littlefs drivers.
char name[LFS_NAME_MAX+1];
};

1.2 LiteOS-M LittleFS的结构体

我们来看下在文件components\fs\littlefs\lfs_api.h里定义的几个结构体。结构体LittleFsHandleStruct维护文件相关的信息,该结构体的成员包含是否使用,文件路径和lfs文件系统类型结构体lfs_t *lfsHandle和文件类型结构体lfs_file_t file。类似的,结构体FileDirInfo维护目录相关的信息,该结构体成员包含包含是否使用,目录名称和lfs文件系统类型结构体lfs_t *lfsHandle和目录类型结构体lfs_dir_t dir。另外一个结构体FileOpInfo维护文件操作信息。

typedef struct {
uint8_t useFlag;
const char *pathName;
lfs_t *lfsHandle;
lfs_file_t file;
} LittleFsHandleStruct; struct FileOpInfo {
uint8_t useFlag;
const struct FileOps *fsVops;
char *dirName;
lfs_t lfsInfo;
}; typedef struct {
uint8_t useFlag;
char *dirName;
lfs_t *lfsHandle;
lfs_dir_t dir;
} FileDirInfo;

2、LiteOS-M LittleFS的重要全局变量及操作

了解下文件components\fs\littlefs\lfs_api.c定义的常用全局变量。⑴处的g_lfsDir数组维护目录信息,默认支持的目录数目为LFS_MAX_OPEN_DIRS,等于10。⑵处的g_fsOp数组维护针对每个挂载点的文件操作信息,默认挂载点数目LOSCFG_LFS_MAX_MOUNT_SIZE为3个。⑶处的g_handle数组维护文件信息,默认支持文件的数量LITTLE_FS_MAX_OPEN_FILES为100个。⑷处开始的struct dirent g_nameValue是目录项结构体变量,用于函数LfsReaddir();pthread_mutex_t g_FslocalMutex是互斥锁变量;g_littlefsMntName是挂载点名称数组。⑸处开始的挂载操作变量g_lfsMnt、文件操作操作全局变量g_lfsFops在虚拟文件系统中被使用。

⑴  FileDirInfo g_lfsDir[LFS_MAX_OPEN_DIRS] = {0};

⑵  struct FileOpInfo g_fsOp[LOSCFG_LFS_MAX_MOUNT_SIZE] = {0};
⑶ static LittleFsHandleStruct g_handle[LITTLE_FS_MAX_OPEN_FILES] = {0};
⑷ struct dirent g_nameValue;
static pthread_mutex_t g_FslocalMutex = PTHREAD_MUTEX_INITIALIZER;
static const char *g_littlefsMntName[LOSCFG_LFS_MAX_MOUNT_SIZE] = {"/a", "/b", "/c"};
......
⑸ const struct MountOps g_lfsMnt = {
.Mount = LfsMount,
.Umount = LfsUmount,
}; const struct FileOps g_lfsFops = {
.Mkdir = LfsMkdir,
.Unlink = LfsUnlink,
.Rmdir = LfsRmdir,
.Opendir = LfsOpendir,
.Readdir = LfsReaddir,
.Closedir = LfsClosedir,
.Open = LfsOpen,
.Close = LfsClose,
.Write = LfsWrite,
.Read = LfsRead,
.Seek = LfsSeek,
.Rename = LfsRename,
.Getattr = LfsStat,
.Fsync = LfsFsync,
.Fstat = LfsFstat,
};

下文继续介绍下和这些变量相关的内部操作接口。

2.1 目录信息数组操作

GetFreeDir()设置目录信息数组元素信息。参数dirName为目录名称。遍历目录信息数组,遍历到第一个未使用的元素标记其为已使用状态,设置目录名称,返回目录信息元素指针地址。如果遍历失败,返回NULL。函数FreeDirInfo()为函数GetFreeDir()的反向操作,根据目录名称设置对应的数组元素为未使用状态,并把GetFreeDir设置为NULL。

函数CheckDirIsOpen()用于检测目录是否已经打开。如果目录信息数组中记录着对应的目录信息,则标志着该目录已经打开。

FileDirInfo *GetFreeDir(const char *dirName)
{
pthread_mutex_lock(&g_FslocalMutex);
for (int i = 0; i < LFS_MAX_OPEN_DIRS; i++) {
if (g_lfsDir[i].useFlag == 0) {
g_lfsDir[i].useFlag = 1;
g_lfsDir[i].dirName = strdup(dirName);
pthread_mutex_unlock(&g_FslocalMutex);
return &(g_lfsDir[i]);
}
}
pthread_mutex_unlock(&g_FslocalMutex);
return NULL;
} void FreeDirInfo(const char *dirName)
{
pthread_mutex_lock(&g_FslocalMutex);
for (int i = 0; i < LFS_MAX_OPEN_DIRS; i++) {
if (g_lfsDir[i].useFlag == 1 && strcmp(g_lfsDir[i].dirName, dirName) == 0) {
g_lfsDir[i].useFlag = 0;
if (g_lfsDir[i].dirName) {
free(g_lfsDir[i].dirName);
g_lfsDir[i].dirName = NULL;
}
pthread_mutex_unlock(&g_FslocalMutex);
}
}
pthread_mutex_unlock(&g_FslocalMutex);
} BOOL CheckDirIsOpen(const char *dirName)
{
pthread_mutex_lock(&g_FslocalMutex);
for (int i = 0; i < LFS_MAX_OPEN_DIRS; i++) {
if (g_lfsDir[i].useFlag == 1) {
if (strcmp(g_lfsDir[i].dirName, dirName) == 0) {
pthread_mutex_unlock(&g_FslocalMutex);
return TRUE;
}
}
}
pthread_mutex_unlock(&g_FslocalMutex);
return FALSE;
}

2.2 文件信息数组操作

函数LfsAllocFd()设置文件信息数组元素信息。参数fileName为文件路径信息,传出参数fd为文件描述符即数组索引。遍历文件信息数组,遍历到第一个未使用的元素标记其为已使用状态,设置文件路径信息,把数组索引赋值给文件描述符fd,返回文件信息元素指针地址。如果遍历失败,返回NULL。函数LfsFreeFd()为函数LfsAllocFd()的反向操作,根据文件描述符设置对应的数组元素为未使用状态,并把路径信息等设置为NULL。

函数CheckFileIsOpen()用于检测文件是否已经打开,文件如果打开过,则表示获取过该文件的文件描述符,根据对应的fd文件描述符,可以对文件进行更多的操作。如果文件信息数组中记录着对应的文件路径信息,则标志着该文件已经打开。函数LfsFdIsValid()用于判断文件描述符是否有效。

LittleFsHandleStruct *LfsAllocFd(const char *fileName, int *fd)
{
pthread_mutex_lock(&g_FslocalMutex);
for (int i = 0; i < LITTLE_FS_MAX_OPEN_FILES; i++) {
if (g_handle[i].useFlag == 0) {
*fd = i;
g_handle[i].useFlag = 1;
g_handle[i].pathName = strdup(fileName);
pthread_mutex_unlock(&g_FslocalMutex);
return &(g_handle[i]);
}
}
pthread_mutex_unlock(&g_FslocalMutex);
*fd = INVALID_FD;
return NULL;
} static void LfsFreeFd(int fd)
{
pthread_mutex_lock(&g_FslocalMutex);
g_handle[fd].useFlag = 0;
if (g_handle[fd].pathName != NULL) {
free((void *)g_handle[fd].pathName);
g_handle[fd].pathName = NULL;
} if (g_handle[fd].lfsHandle != NULL) {
g_handle[fd].lfsHandle = NULL;
}
pthread_mutex_unlock(&g_FslocalMutex);
} BOOL CheckFileIsOpen(const char *fileName)
{
pthread_mutex_lock(&g_FslocalMutex);
for (int i = 0; i < LITTLE_FS_MAX_OPEN_FILES; i++) {
if (g_handle[i].useFlag == 1) {
if (strcmp(g_handle[i].pathName, fileName) == 0) {
pthread_mutex_unlock(&g_FslocalMutex);
return TRUE;
}
}
}
pthread_mutex_unlock(&g_FslocalMutex);
return FALSE;
} static BOOL LfsFdIsValid(int fd)
{
if (fd >= LITTLE_FS_MAX_OPEN_FILES || fd < 0) {
return FALSE;
}
if (g_handle[fd].lfsHandle == NULL) {
return FALSE;
}
return TRUE;
}

2.3 挂载点文件操作信息相关操作

函数AllocMountRes()用于设置挂载点文件操作信息。参数target为挂载点名称,参数fileOps为文件操作信息。遍历每个挂载点,如果遍历到的挂载点未使用,并且挂载点名称相等,则设置其使用标记为已使用,设置目录名称,设置文件操作信息,然后返回文件操作信息指针。如果没有遍历到,返回NULL。挂载点数组g_littlefsMntName的元素默认为/a,/b,/c等,可以使用函数SetDefaultMountPath()设置指定位置的挂载点名称。

struct FileOpInfo *AllocMountRes(const char* target, const struct FileOps *fileOps)
{
pthread_mutex_lock(&g_FslocalMutex);
for (int i = 0; i < LOSCFG_LFS_MAX_MOUNT_SIZE; i++) {
if (g_fsOp[i].useFlag == 0 && strcmp(target, g_littlefsMntName[i]) == 0) {
g_fsOp[i].useFlag = 1;
g_fsOp[i].fsVops = fileOps;
g_fsOp[i].dirName = strdup(target);
pthread_mutex_unlock(&g_FslocalMutex);
return &(g_fsOp[i]);
}
} pthread_mutex_unlock(&g_FslocalMutex);
return NULL;
} int SetDefaultMountPath(int pathNameIndex, const char* target)
{
if (pathNameIndex >= LOSCFG_LFS_MAX_MOUNT_SIZE) {
return VFS_ERROR;
} pthread_mutex_lock(&g_FslocalMutex);
g_littlefsMntName[pathNameIndex] = strdup(target);
pthread_mutex_unlock(&g_FslocalMutex);
return VFS_OK;
}

函数GetMountRes()用于获取给定挂载点在挂载点文件操作信息数组中的索引值。参数target为挂载点名称,参数mountIndex用于输出文件操作信息数组索引值。遍历每个挂载点,如果遍历到的挂载点已使用,并且挂载点名称相等,则返回相应的数组索引,否则返回NULL。

struct FileOpInfo *GetMountRes(const char *target, int *mountIndex)
{
pthread_mutex_lock(&g_FslocalMutex);
for (int i = 0; i < LOSCFG_LFS_MAX_MOUNT_SIZE; i++) {
if (g_fsOp[i].useFlag == 1) {
if (g_fsOp[i].dirName && strcmp(target, g_fsOp[i].dirName) == 0) {
*mountIndex = i;
pthread_mutex_unlock(&g_FslocalMutex);
return &(g_fsOp[i]);
}
}
} pthread_mutex_unlock(&g_FslocalMutex);
return NULL;
}

函数FreeMountResByIndex()属于函数AllocMountRes()的反向操作,用于释放挂载点文件操作信息。传入参数mountIndex对应的文件操作信息标记为未使用状态,释放挂载点名称占用的内存。函数FreeMountRes()实现的功能一样,传入参数为挂载点名称。遍历每一个挂载点,如果存在和传入参数相同的挂载点,则进行释放。

int FreeMountResByIndex(int mountIndex)
{
if (mountIndex < 0 || mountIndex >= LOSCFG_LFS_MAX_MOUNT_SIZE) {
return VFS_ERROR;
} pthread_mutex_lock(&g_FslocalMutex);
if (g_fsOp[mountIndex].useFlag == 1 && g_fsOp[mountIndex].dirName != NULL) {
g_fsOp[mountIndex].useFlag = 0;
free(g_fsOp[mountIndex].dirName);
g_fsOp[mountIndex].dirName = NULL;
}
pthread_mutex_unlock(&g_FslocalMutex); return VFS_OK;
} int FreeMountRes(const char *target)
{
pthread_mutex_lock(&g_FslocalMutex);
for (int i = 0; i < LOSCFG_LFS_MAX_MOUNT_SIZE; i++) {
if (g_fsOp[i].useFlag == 1) {
if (g_fsOp[i].dirName && strcmp(target, g_fsOp[i].dirName) == 0) {
g_fsOp[i].useFlag = 0;
free(g_fsOp[i].dirName);
g_fsOp[i].dirName = NULL;
pthread_mutex_unlock(&g_FslocalMutex);
return VFS_OK;
}
}
} pthread_mutex_unlock(&g_FslocalMutex);
return VFS_ERROR;
}

2.4 路径是否已挂载CheckPathIsMounted

函数CheckPathIsMounted()用于检查给定的路径是否已经挂载,如果挂载上把对应挂载点的文件操作信息由参数struct FileOpInfo **fileOpInfo输出。⑴处先获取路径的第一级目录的长度。⑵处遍历每一个挂载点的文件操作数组,如果文件操作处于使用状态,则执行⑶比对相应的挂载点名称和路径的第一级目录名称是否相等。如果相等,则输出文件操作信息,并返回TRUE。否则返回FALSE。

int GetFirstLevelPathLen(const char *pathName)
{
int len = 1;
for (int i = 1; i < strlen(pathName) + 1; i++) {
if (pathName[i] == '/') {
break;
}
len++;
} return len;
} BOOL CheckPathIsMounted(const char *pathName, struct FileOpInfo **fileOpInfo)
{
char tmpName[LITTLEFS_MAX_LFN_LEN] = {0};
⑴ int len = GetFirstLevelPathLen(pathName); pthread_mutex_lock(&g_FslocalMutex);
for (int i = 0; i < LOSCFG_LFS_MAX_MOUNT_SIZE; i++) {
⑵ if (g_fsOp[i].useFlag == 1) {
(void)strncpy_s(tmpName, LITTLEFS_MAX_LFN_LEN, pathName, len);
⑶ if (strcmp(tmpName, g_fsOp[i].dirName) == 0) {
*fileOpInfo = &(g_fsOp[i]);
pthread_mutex_unlock(&g_FslocalMutex);
return TRUE;
}
}
}
pthread_mutex_unlock(&g_FslocalMutex);
return FALSE;
}

3、LiteOS-M LittleFS的文件系统操作接口

快速记录下各个操作接口,对每个接口的用途用法不再描述。可以参考之前的系列文章,《鸿蒙轻内核M核源码分析系列十九 Musl LibC》中介绍了相关的接口,那些接口会调用VFS文件系统中操作接口,然后进一步调用LFS文件操作接口。

3.1 挂载LfsMount和卸载LfsUmounts操作

挂载卸载操作包含LfsMount、LfsUmounts等2个操作。对于函数LfsMount(),需要注意下参数const void *data,这个需要是struct lfs_config指针类型变量。⑴处在挂载文件系统之前,对输入参数进行检测。⑵处判断是否已经挂载,不允许重复挂载。⑶处设置挂载点信息,⑷处调用LFS的函数实现挂载,如果挂载失败,则执行⑸尝试格式化,然后重新挂载。

对于函数LfsUmount(),⑹处根据挂载点获取文件操作信息和挂载点索引值。⑺处调用LFS函数实现卸载,然后执行⑻释放挂载点文件操作信息。

int LfsMount(const char *source, const char *target, const char *fileSystemType, unsigned long mountflags,
const void *data)
{
int ret;
struct FileOpInfo *fileOpInfo = NULL; ⑴ if (target == NULL || fileSystemType == NULL || data == NULL) {
errno = EFAULT;
ret = VFS_ERROR;
goto errout;
} if (strcmp(fileSystemType, "littlefs") != 0) {
errno = ENODEV;
ret = VFS_ERROR;
goto errout;
} ⑵ if (CheckPathIsMounted(target, &fileOpInfo)) {
errno = EBUSY;
ret = VFS_ERROR;
goto errout;
} // select free mount resource
⑶ fileOpInfo = AllocMountRes(target, &g_lfsFops);
if (fileOpInfo == NULL) {
errno = ENODEV;
ret = VFS_ERROR;
goto errout;
} ⑷ ret = lfs_mount(&(fileOpInfo->lfsInfo), (struct lfs_config*)data);
if (ret != 0) {
⑸ ret = lfs_format(&(fileOpInfo->lfsInfo), (struct lfs_config*)data);
if (ret == 0) {
ret = lfs_mount(&(fileOpInfo->lfsInfo), (struct lfs_config*)data);
}
} if (ret != 0) {
errno = LittlefsErrno(ret);
ret = VFS_ERROR;
} errout:
return ret;
} int LfsUmount(const char *target)
{
int ret;
int mountIndex = -1;
struct FileOpInfo *fileOpInfo = NULL; if (target == NULL) {
errno = EFAULT;
return VFS_ERROR;
} ⑹ fileOpInfo = GetMountRes(target, &mountIndex);
if (fileOpInfo == NULL) {
errno = ENOENT;
return VFS_ERROR;
} ⑺ ret = lfs_unmount(&(fileOpInfo->lfsInfo));
if (ret != 0) {
errno = LittlefsErrno(ret);
ret = VFS_ERROR;
} ⑻ (void)FreeMountResByIndex(mountIndex);
return ret;
}

3.2 文件目录操作接口

文件目录操作接口包含LfsMkdir、LfsUnlink、LfsRmdir、LfsReaddir、LfsClosedir、LfsOpen、LfsClose等等,会进一步调用LFS的文件目录操作接口进行封装,代码比较简单,自行阅读即可,部分代码片段如下。

......
int LfsUnlink(const char *fileName)
{
int ret;
struct FileOpInfo *fileOpInfo = NULL; if (fileName == NULL) {
errno = EFAULT;
return VFS_ERROR;
} if (CheckPathIsMounted(fileName, &fileOpInfo) == FALSE || fileOpInfo == NULL) {
errno = ENOENT;
return VFS_ERROR;
} ret = lfs_remove(&(fileOpInfo->lfsInfo), fileName);
if (ret != 0) {
errno = LittlefsErrno(ret);
ret = VFS_ERROR;
} return ret;
} int LfsMkdir(const char *dirName, mode_t mode)
{
int ret;
struct FileOpInfo *fileOpInfo = NULL; if (dirName == NULL) {
errno = EFAULT;
return VFS_ERROR;
} if (CheckPathIsMounted(dirName, &fileOpInfo) == FALSE || fileOpInfo == NULL) {
errno = ENOENT;
return VFS_ERROR;
} ret = lfs_mkdir(&(fileOpInfo->lfsInfo), dirName);
if (ret != 0) {
errno = LittlefsErrno(ret);
ret = VFS_ERROR;
} return ret;
}
......

参考资料

  • HarmonyOS Device>文档指南>基础能力-LittleFS

点击关注,第一时间了解华为云新鲜技术~

鸿蒙轻内核源码分析:文件系统LittleFS的更多相关文章

  1. 鸿蒙轻内核源码分析:文件系统FatFS

    摘要:本文为大家介绍FatFS文件系统结构体的结构体和全局变量,并分析FatFS文件操作接口. 本文分享自华为云社区<鸿蒙轻内核M核源码分析系列二一 03 文件系统FatFS>,作者:zh ...

  2. 鸿蒙内核源码分析(文件系统篇) | 用图书管理说文件系统 | 百篇博客分析OpenHarmony源码 | v63.01

    百篇博客系列篇.本篇为: v63.xx 鸿蒙内核源码分析(文件系统篇) | 用图书管理说文件系统 | 51.c.h.o 文件系统相关篇为: v62.xx 鸿蒙内核源码分析(文件概念篇) | 为什么说一 ...

  3. 鸿蒙内核源码分析(VFS篇) | 文件系统和谐共处的基础 | 百篇博客分析OpenHarmony源码 | v68.01

    子曰:"质胜文则野,文胜质则史.文质彬彬,然后君子." <论语>:雍也篇 百篇博客系列篇.本篇为: v68.xx 鸿蒙内核源码分析(VFS篇) | 文件系统和谐共处的基 ...

  4. 鸿蒙内核源码分析(根文件系统) | 先挂到`/`上的文件系统 | 百篇博客分析OpenHarmony源码 | v66.01

    百篇博客系列篇.本篇为: v66.xx 鸿蒙内核源码分析(根文件系统) | 先挂到/上的文件系统 | 51.c.h.o 文件系统相关篇为: v62.xx 鸿蒙内核源码分析(文件概念篇) | 为什么说一 ...

  5. 鸿蒙内核源码分析(挂载目录篇) | 为何文件系统需要挂载 | 百篇博客分析OpenHarmony源码 | v65.01

    百篇博客系列篇.本篇为: v65.xx 鸿蒙内核源码分析(挂载目录篇) | 为何文件系统需要挂载 | 51.c.h.o 文件系统相关篇为: v62.xx 鸿蒙内核源码分析(文件概念篇) | 为什么说一 ...

  6. 鸿蒙内核源码分析(索引节点篇) | 谁是文件系统最重要的概念 | 百篇博客分析OpenHarmony源码 | v64.01

    百篇博客系列篇.本篇为: v64.xx 鸿蒙内核源码分析(索引节点篇) | 谁是文件系统最重要的概念 | 51.c.h.o 文件系统相关篇为: v62.xx 鸿蒙内核源码分析(文件概念篇) | 为什么 ...

  7. 鸿蒙内核源码分析(管道文件篇) | 如何降低数据流动成本 | 百篇博客分析OpenHarmony源码 | v70.01

    百篇博客系列篇.本篇为: v70.xx 鸿蒙内核源码分析(管道文件篇) | 如何降低数据流动成本 | 51.c.h.o 文件系统相关篇为: v62.xx 鸿蒙内核源码分析(文件概念篇) | 为什么说一 ...

  8. 鸿蒙内核源码分析(文件句柄篇) | 深挖应用操作文件的细节 | 百篇博客分析OpenHarmony源码 | v69.01

    百篇博客系列篇.本篇为: v69.xx 鸿蒙内核源码分析(文件句柄篇) | 深挖应用操作文件的细节 | 51.c.h.o 文件系统相关篇为: v62.xx 鸿蒙内核源码分析(文件概念篇) | 为什么说 ...

  9. 鸿蒙内核源码分析(字符设备篇) | 字节为单位读写的设备 | 百篇博客分析OpenHarmony源码 | v67.01

    百篇博客系列篇.本篇为: v67.xx 鸿蒙内核源码分析(字符设备篇) | 字节为单位读写的设备 | 51.c.h.o 文件系统相关篇为: v62.xx 鸿蒙内核源码分析(文件概念篇) | 为什么说一 ...

随机推荐

  1. CHARINDEX 用法

    CHARINDEX 返回字符串中指定表达式的起始位置. 语法 CHARINDEX ( expression1 , expression2 [ , start_location ] ) 参数 expre ...

  2. Codeforces 450C:Jzzhu and Chocolate(贪心)

    C. Jzzhu and Chocolate time limit per test: 1 seconds memory limit per test: 256 megabytes input: st ...

  3. Chapter 15 Outcome Regression and Propensity Scores

    目录 15.1 Outcome regression 15.2 Propensity scores 15.3 Propensity stratification and standardization ...

  4. Universal adversarial perturbations

    目录 概 主要内容 算法 实验部分 实验1 实验2 实验3 代码 Moosavidezfooli S, Fawzi A, Fawzi O, et al. Universal Adversarial P ...

  5. 编写Java程序,创建一个父类交通工具类(Vehicles),以及两个子类,分别是轿车类(Car)和卡车类(Truck)。

    返回本章节 返回作业目录 需求说明: 创建一个父类交通工具类(Vehicles),以及两个子类,分别是轿车类(Car)和卡车类(Truck). 父类有属性品牌(brand)和颜色(color). 在父 ...

  6. Centos8 设置中文

    1.一般情况 1.1 进入设置选择 Region&Language 1.2 点击 加号 1.3 点击 汉语(中国) 1.4 选择 汉语(智能拼音) 2.特殊情况 有些虚拟机可能没有 汉语(智能 ...

  7. 《手把手教你》系列技巧篇(五十三)-java+ selenium自动化测试-上传文件-上篇(详细教程)

    1.简介 在实际工作中,我们进行web自动化的时候,文件上传是很常见的操作,例如上传用户头像,上传身份证信息等.所以宏哥打算按上传文件的分类对其进行一下讲解和分享. 2.为什么selenium没有提供 ...

  8. Java中List与数组互相转换

    1.说明 在Java中,经常遇到需要List与数组互相转换的场景. List转换成数组,可以使用List的toArray()或者toArray(T[] a)方法. 数组转换成List,可以使用Arra ...

  9. 『无为则无心』Python函数 — 29、Python变量和参数传递

    目录 1.Python的变量 (1)Python变量不能独立存在 (2)变量是内存中数据的引用 (3)注意点 2.了解变量的引用 3.Python的参数传递(重点) (1)示例 (2)结论 (3)总结 ...

  10. Java--Map的使用认知

    Java里面的Map是一个抽象接口,有一些类实现的该接口比如HashMap.TreeMap等 HashMap 是一个散列表,存储的内容是靠键值对来映射的(key-value). 基本认识 HashMa ...