from sklearn import datasets
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
import numpy as np def sigmoid(x):
# 激活函数 f(x) = 1 / (1 + e^(-x))
return 1 / (1 + np.exp(-x)) def deri_sigmoid(x):
# 激活函数求导 f'(x) = f(x) * (1 - f(x))
k = sigmoid(x)
return k * (1 - k) def mse_loss(y_true, y_pred):
return ((y_true - y_pred) ** 2).mean() class OurNeuralNetwork():
def __init__(self):
self.w1 = np.random.normal()
self.w2 = np.random.normal()
self.w3 = np.random.normal()
self.w4 = np.random.normal()
self.w5 = np.random.normal()
self.w6 = np.random.normal() self.b1 = np.random.normal()
self.b2 = np.random.normal()
self.b3 = np.random.normal() def feedforward(self, x):
h1 = sigmoid(x[0] * self.w1 + x[1] * self.w2 + self.b1)
h2 = sigmoid(x[0] * self.w3 + x[1] * self.w4 + self.b2)
o1 = sigmoid(h1 * self.w5 + h2 * self.w6 + self.b3)
return o1 def train(self, data, all_y_trues):
learn_rate = 0.1
times = 1000
for time in range(times):
for x, y_true in zip(data, all_y_trues):
sum_h1 = x[0] * self.w1 + x[1] * self.w2 + self.b1
h1 = sigmoid(sum_h1)
sum_h2 = x[0] * self.w3 + x[1] * self.w4 + self.b2
h2 = sigmoid(sum_h2)
sum_o1 = h1 * self.w5 + h2 * self.w6 + self.b3
o1 = sigmoid(sum_o1)
y_pred = o1 dL_dypred = -2 * (y_true - y_pred) # 第一个导数 dL/dypred
dypred_dw5 = deri_sigmoid(sum_o1) * h1
dypred_dw6 = deri_sigmoid(sum_o1) * h2
dypred_db3 = deri_sigmoid(sum_o1) dypred_dh1 = deri_sigmoid(sum_o1) * self.w5
dypred_dh2 = deri_sigmoid(sum_o1) * self.w6 dh1_dw1 = deri_sigmoid(sum_h1) * x[0]
dh1_dw2 = deri_sigmoid(sum_h1) * x[1]
dh1_db1 = deri_sigmoid(sum_h1) dh2_dw3 = deri_sigmoid(sum_h2) * x[0]
dh2_dw4 = deri_sigmoid(sum_h2) * x[1]
dh2_db2 = deri_sigmoid(sum_h2) # 更新权重 w1 -= learn_rate * dL_dw1, dL_dw1 = dL/dypred * dypred/dh1 * dh1/dw1
self.w5 -= learn_rate * dL_dypred * dypred_dw5
self.w6 -= learn_rate * dL_dypred * dypred_dw6
self.w3 -= learn_rate * dL_dypred * dypred_db3 self.w3 -= learn_rate * dL_dypred * dypred_dh2 * dh2_dw3
self.w4 -= learn_rate * dL_dypred * dypred_dh2 * dh2_dw4
self.b2 -= learn_rate * dL_dypred * dypred_dh2 * dh2_db2 self.w1 -= learn_rate * dL_dypred * dypred_dh1 * dh1_dw1
self.w2 -= learn_rate * dL_dypred * dypred_dh1 * dh1_dw2
self.b1 -= learn_rate * dL_dypred * dypred_dh1 * dh1_db1 if time % 10 == 0:
y_preds = np.apply_along_axis(self.feedforward, 1, data)
loss = mse_loss(all_y_trues, y_preds)
print("time %d loss: %0.3f" % (time, loss)) # Define dataset
data = np.array([
[-2, -1], # Alice
[25, 6], # Bob
[17, 4], # Charlie
[-15, -6] # diana
])
all_y_trues = np.array([
1, # Alice
0, # Bob
0, # Charlie
1 # diana
]) # Train our neural network!
network = OurNeuralNetwork()
network.train(data, all_y_trues)

Python之简单的神经网络的更多相关文章

  1. Python实现一个简单三层神经网络的搭建并测试

    python实现一个简单三层神经网络的搭建(有代码) 废话不多说了,直接步入正题,一个完整的神经网络一般由三层构成:输入层,隐藏层(可以有多层)和输出层.本文所构建的神经网络隐藏层只有一层.一个神经网 ...

  2. 一个 11 行 Python 代码实现的神经网络

    一个 11 行 Python 代码实现的神经网络 2015/12/02 · 实践项目 · 15 评论· 神经网络 分享到:18 本文由 伯乐在线 - 耶鲁怕冷 翻译,Namco 校稿.未经许可,禁止转 ...

  3. python手写bp神经网络实现人脸性别识别1.0

    写在前面:本实验用到的图片均来自google图片,侵删! 实验介绍 用python手写一个简单bp神经网络,实现人脸的性别识别.由于本人的机器配置比较差,所以无法使用网上很红的人脸大数据数据集(如lf ...

  4. Python语言编写BP神经网络

    Python语言编写BP神经网络 2016年10月31日 16:42:44 ldy944758217 阅读数 3135   人工神经网络是一种经典的机器学习模型,随着深度学习的发展神经网络模型日益完善 ...

  5. 用Python从头开始构建神经网络

    神经网络已经被开发用来模拟人脑.虽然我们还没有做到这一点,但神经网络在机器学习方面是非常有效的.它在上世纪80年代和90年代很流行,最近越来越流行.计算机的速度足以在合理的时间内运行一个大型神经网络. ...

  6. Python 实现简单的 Web

    简单的学了下Python, 然后用Python实现简单的Web. 因为正在学习计算机网络,所以通过编程来加强自己对于Http协议和Web服务器的理解,也理解下如何实现Web服务请求.响应.错误处理以及 ...

  7. tensorflow学习笔记四:mnist实例--用简单的神经网络来训练和测试

    刚开始学习tf时,我们从简单的地方开始.卷积神经网络(CNN)是由简单的神经网络(NN)发展而来的,因此,我们的第一个例子,就从神经网络开始. 神经网络没有卷积功能,只有简单的三层:输入层,隐藏层和输 ...

  8. 用 python实现简单EXCEL数据统计

    任务: 用python时间简单的统计任务-统计男性和女性分别有多少人. 用到的物料:xlrd 它的作用-读取excel表数据 代码: import xlrd workbook = xlrd.open_ ...

  9. python开启简单webserver

    python开启简单webserver linux下面使用 python -m SimpleHTTPServer 8000 windows下面使用上面的命令会报错,Python.Exe: No Mod ...

随机推荐

  1. Bootstrap-table 显示行号

    趁热打铁,使用bootstrap-table时,想要显示每行的行号,再网上查了查,网上给的显示行号的大部分方法,只要一翻页,行号就会又从1开始计算, 也许没有碰到想要的,自己试着解决了这个问题,本人初 ...

  2. Android常用开源库(转)

    一 .基本控件 TextView HTextView 一款支持TextView文字动画效果的Android组件库. ScrollNumber 滚动数字控件 ticker 滚动数字控件 ReadMore ...

  3. 入门Kubernetes-Service

    一.前言 前一篇文章通过 Deployment 实现了Pod中服务实现滚动更新/回滚等操作:在真实应用场景中,需要将一组Pod提供给外部访问.而且Pod生命周期是短暂的,在 Pod 的生命周期过程中, ...

  4. DHCP与配置命令

    1. DHCP简介 2. DHCP主要用途 3. 使用DHCP的好处 4.DHCP经典应用模式 5.DHCP交互过程 DHCP的IP地址自动获取工作原理 6.DHCP中继    应用场景   工作原理 ...

  5. SELECT SQL

    替换换行符: update qgnews set article_url=REPLACE(article_url,char(10),'') 替换回车符: update qgnews set artic ...

  6. SpringBoot总结之事务和AOP

    一.事务 在Spring Boot中,当我们使用了spring-boot-starter-jdbc或spring-boot-starter-data-jpa依赖的时候,框架会自动默认分别注入DataS ...

  7. vue2.x移动端ui框架选型

    前言 最近公司准备做移动端spa项目,需要选一个ui框架.优先考虑谷歌Material Design设计风格.针对市面上的框架进行了一次调研,简单总结如下. 选型原则:1. 优先考虑md风格. 2. ...

  8. Python (paramiko) 连接Linux服务器

    目录 参考资料 Paramiko 安装 连接Linux 文件上传/下载 文件封装 其他 参考资料 https://www.liujiangblog.com/blog/15/ https://blog. ...

  9. 架构之:REST和HATEOAS

    目录 简介 HATEOAS简介 HATEOAS的格式 HATEOAS的Spring支持 总结 简介 我们知道REST是一种架构方式,它只是指定了六种需要遵循的基本原则,但是它指定的原则都比较宽泛,我们 ...

  10. jdk源码阅读-Object类

    native 关键字 private static native void registerNatives(); static { registerNatives(); } public final ...