* { font-family: "Tibetan Machine Uni", "sans-serif", STFangSong; outline: none }

一、概述

  1. 旋转变换的核心思想

    在不同坐标系下,虽然坐标不同,但是同一个向量还是一样的。这句话有点儿怪怪的,但是可以用数学公式表出:\(\beta_1^T\cdot\alpha_1=\beta_2^T\cdot\alpha_2\),其中\(\beta\)是不同坐标系的标准正交基(行分块),\(\alpha\)是不同坐标系下的坐标(列向量)。

  2. 旋转变换的五种表述

    1. 旋转矩阵;
    2. 欧式矩阵;
    3. 旋转向量;
    4. 欧拉角;
    5. 四元数;
  3. 旋转变换表述的演替

    1. 旋转矩阵和平移矩阵:有小尾巴累积(非线性)
    2. 欧式矩阵:n+1维方阵要\((n+1)^2\)个自由度,太多了(线性,但不紧凑且不直观)
    3. 旋转向量:这是什么呀这一堆数?!看不懂!(紧凑但不直观)
    4. 欧拉角:这会看懂了…等等,这转个90\(^\circ\)咋就膈屁了呢?!(紧凑直观但奇异)
    5. 四元数:爱咋转咋转…等等不对!咋1个\(R\)冒俩\(q\)呢?\(q\)咋还内讧了呢?(紧凑非奇异,但不唯一且不稳定)
  4. 在Eigen库中它们四个大哥(欧式矩阵对不起,现在我们只考虑旋转)的转换关系

    旋转向量和四元数先初始化(默认定义为‘单位阵’,不能赋值为nullptr或者直接使用)!!!

    1. 旋转矩阵

      1. 初始化旋转矩阵
        Eigen::Matrix3d rotation_matrix;
        // 通过标准输入设备(标准输入流)键入赋值
        rotation_matrix << x_00,x_01,x_02,x_10,x_11,x_12,x_20,x_21,x_22;
      2. 旋转矩阵 \(\Longrightarrow\) 旋转向量
        // 第一种:通过构造函数(传入一个旋转矩阵)
        Eigen::AngleAxisd rotation_vector(rotation_matrix);
        // 第二种:首先初始化,然后通过旋转矩阵直接赋值(重载了赋值运算符)
        Eigen::AngleAxisd rotation_vector;
        rotation_vector = rotation_matrix;
        // 第三种:首先初始化,然后from函数直接作用于this对象(rotation_vector)
        Eigen::AngleAxisd rotation_vector;
        rotation_vector.fromRotationMatrix(rotation_matrix);
      3. 旋转矩阵 \(\Longrightarrow\) 欧拉角
        // (2, 1, 0)表示旋转顺序ZYX,数字越小表示优先级越高
        Eigen::Vector3d euler_angle = rotation_matrix.eulerAngles(2, 1, 0);
      4. 旋转矩阵 \(\Longrightarrow\) 四元数
        // 第一种:通过构造函数(传入一个旋转矩阵)
        Eigen::Quaterniond quaternion(rotation_matrix);
        // 第二种:首先初始化,然后通过旋转矩阵直接赋值(重载了赋值运算符)
        Eigen::Quaterniond quaternion;
        quaternion = rotation_matrix;
    2. 旋转向量

      1. 初始化旋转向量
        // 通过构造函数
        Eigen::AngleAxisd rotation_vector(alpha, Vector3d(x,y,z));
      2. 旋转向量 \(\Longrightarrow\) 旋转矩阵
        // 第一种方法:通过构造方法传入旋转向量
        Eigen::Matrix3d rotation_matrix(rotation_vector);
        // 第二种方法:首先初始化,然后通过旋转向量直接赋值(重载了赋值运算符)
        Eigen::Matrix3d rotation_matrix;
        rotation_matrix = rotation_vector;
        // 第三种方法:通过matrix方法
        Eigen::Matrix3d rotation_matrix = rotation_vector.matrix();
        // 第四种方法:通过toRotationMatrix方法
        Eigen::Matrix3d rotation_matrix = rotation_vector.toRotationMatrix();
      3. 旋转向量 \(\Longrightarrow\) 欧拉角
        // 不能直接转换,需要通过旋转矩阵搭桥
        Eigen::Vector3d euler_angles = rotation_vector.matrix().eulerAngles(2, 1, 0);
      4. 旋转向量 \(\Longrightarrow\) 四元数
        // 第一种方法:通过构造函数传入旋转向量
        Eigen::Quaterniond quaterniond(rotation_vector);
        // 第二种方法:首先初始化,然后用旋转向量赋值
        Eigen::Quaterniond quaterniond;
        quaterniond = rotation_vector;
    3. 欧拉角

      1. 初始化欧拉角
        Eigen::Vector3d euler_angles(yaw, pitch, roll);
      2. 欧拉角 \(\Longrightarrow\) 旋转矩阵
        // 初始化三个旋转角的旋转向量
        Eigen::AngleAxisd rollAngle(AngleAxisd(euler_angles(2),Eigen::Vector3d::UnitX()));
        Eigen::AngleAxisd pitchAngle(AngleAxisd(euler_angles(1),Eigen::Vector3d::UnitY()));
        Eigen::AngleAxisd yawAngle(AngleAxisd(euler_angles(0),Eigen::Vector3d::UnitZ()));
        // 先初始化旋转矩阵为单位矩阵,然后这三个旋转向量相乘得到旋转矩阵(运算符重载)
        Eigen::Matrix3d rotation_matrix;
        rotation_matrix = yawAngle * pitchAngle * rollAngle;
      3. 欧拉角 \(\Longrightarrow\) 旋转向量
        // 初始化三个旋转角的旋转向量
        Eigen::AngleAxisd rollAngle(AngleAxisd(euler_angles(0), Eigen::Vector3d::UnitX()));
        Eigen::AngleAxisd pitchAngle(AngleAxisd(euler_angles(1), Eigen::Vector3d::UnitY()));
        Eigen::AngleAxisd yawAngle(AngleAxisd(euler_angles(2), Eigen::Vector3d::UnitZ()));
        // 先初始化旋转向量,然后这三个旋转向量相乘得到旋转向量(运算符重载)
        Eigen::AngleAxisd rotation_vector;
        rotation_vector = yawAngle * pitchAngle * rollAngle;
      4. 欧拉角 \(\Longrightarrow\) 四元数
        // 初始化三个旋转角的旋转向量
        Eigen::AngleAxisd rollAngle(AngleAxisd(euler_angles(2),Eigen::Vector3d::UnitX()));
        Eigen::AngleAxisd pitchAngle(AngleAxisd(euler_angles(1),Eigen::Vector3d::UnitY()));
        Eigen::AngleAxisd yawAngle(AngleAxisd(euler_angles(0),Eigen::Vector3d::UnitZ()));
        // 先初始化四元数,然后这三个旋转向量相乘得到旋转向量(运算符重载)
        Eigen::Quaterniond quaterniond;
        quaterniond = yawAngle * pitchAngle * rollAngle;
    4. 四元数

      1. 初始化四元数
        Eigen::Quaterniond quaterniond(w, x, y, z);
      2. 四元数 \(\Longrightarrow\) 旋转矩阵
        // 第一种方法:通过构造方法传入四元数
        Eigen::Matrix3d rotation_matrix(quaterniond);
        // 第二种方法:首先初始化,然后通过四元数直接赋值(重载了赋值运算符)
        Eigen::Matrix3d rotation_matrix;
        rotation_matrix = quaterniond;
        // 第三种方法:通过matrix方法
        Eigen::Matrix3d rotation_matrix = quaterniond.matrix();
        // 第四种方法:通过toRotationMatrix方法
        Eigen::Matrix3d rotation_matrix = quaterniond.toRotationMatrix();
      3. 四元数 \(\Longrightarrow\) 旋转向量
        // 第一种方法:通过构造函数传入一个四元数
        Eigen::AngleAxisd rotation_vector(quaterniond);
        // 第二种方法:通过四元数直接赋值(运算符重载)
        Eigen::AngleAxisd rotation_vector;
        rotation_vector = quaterniond;
      4. 四元数 \(\Longrightarrow\) 欧拉角
        // 不能直接转换,需要靠旋转矩阵搭桥
        Eigen::Vector3d euler_angles = quaterniond.matrix().eulerAngles(2, 1, 0);
    5. 在Eigen中的转换——总结篇

      1. 旋转矩阵到旋转向量的FRM()方法是fromRotationMatrix();
      2. 四元数和旋转向量到旋转矩阵用的同一套体系,其中TRM()方法是toRotationMatrix();
      3. 只有旋转矩阵才能直接转换为欧拉角,其EA()方法为eulerAngles();
      4. 欧拉角转换成其他旋转表述形式用的同一套体系:RPY相乘。先初始化三个旋转角(RPY)的旋转向量,然后初始化所需旋转表述形式,最后这三个旋转向量相乘得到相应旋转表述形式(运算符重载);
  5. 旋转表述的使用

    1. 旋转矩阵

      Eigen::Vector3d v( 1,0,0 );
      v_rotated = rotation_matrix * v;
    2. 欧式矩阵

      Eigen::Vector3d v( 1,0,0 );
      Eigen::Isometry3d T=Eigen::Isometry3d::Identity();
      // 为欧式矩阵设置旋转矩阵
      T.rotate(rotation_vector);
      // 为欧式矩阵设置平移矩阵
      T.pretranslate(Eigen::Vector3d(1, 3, 4));
      Eigen::Vector3d v_transformed = T * v;
    3. 旋转向量

      Eigen::Vector3d v( 1,0,0 );
      Eigen::Vector3d v_rotated = rotation_vector * v;
    4. 欧拉角

      Eigen::Vector3d v( 1,0,0 );
      Eigen::Vector3d euler_angles(M_PI / 4, M_PI / 4, M_PI / 4);
      // 通过上述转换:rotation_matrix !!!
      Eigen::Vector3d v_rotated = rotation_matrix * v;
    5. 四元数

      Eigen::Vector3d v( 1,0,0 );
      Eigen::Quaterniond q = Eigen::Quaterniond(rotation_vector);
      // 注意数学上的表达式是:qvq^{-1}
      Eigen::Vector3d v_rotated = q * v;

二、详述

  1. 旋转矩阵

    1. 旋转矩阵的定义

      \[\begin{aligned}
      &由旋转的本质方程:\beta_1^T\alpha_1=\beta_2^T\alpha_2,
      又由于\beta是标准正交基,所以\beta\beta^T = E;
      \\
      &所以两边同时乘上\beta_1,故而可得\alpha_1=\beta_1\beta_2^T\alpha_2,记旋转矩阵R=\beta_1\beta_2^T;
      \end{aligned}
      \]
    2. 旋转矩阵各个参数的意义

      \(\beta\)是标准正交基,\(\alpha\)是相应坐标系下的坐标。

    3. 旋转矩阵各个参数的计算

      \(R=\beta_1\beta_2^T\)。

  2. 欧式矩阵

    1. 欧式矩阵的定义

      \[T =
      \left[
      \begin{matrix}
      R&t\\
      \it{0}^T&1
      \end{matrix}
      \right]
      \]
    2. 欧式矩阵各个参数的意义

      \(R\)是旋转矩阵,\(t\)是平移向量,\(\it{0}^T\)是0列向量。

    3. 欧式矩阵各个参数的计算

      不用计算,直接就有!!!

  3. 旋转向量

    1. 旋转向量的定义

      \[\overrightarrow{n}与旋角\theta
      \]
    2. 旋转向量各个参数的意义

      任何一个向量(或称为点)【1】的旋转都是绕着一个特定的轴来旋转,我们可以用这个轴的长度保存旋转角的大小\(\theta\)。故而旋转角被定义为:\(\theta\overrightarrow{n}\)。

      【注】【1】:这里本来是坐标系的旋转,但是我们用相对的眼光看问题,我们如果聚焦于坐标系的话就相当与是向量在旋转。一个向量绕着一个轴在转可能比坐标系绕着一个轴在转好理解一点,这俩本质一样。

    3. 旋转向量各个参数的计算

      1. 旋转轴\(\overrightarrow{n}\)的计算

        旋转轴在旋转的时候是不会变化的,所以有:\(R\overrightarrow{n}=\overrightarrow{n}\),即有\(\overrightarrow{n}\)为\(R\)的特征值为1的特征向量。

      2. 旋转角\(\theta\)的计算

        罗德格里斯指出了旋转向量到旋转矩阵的法则:\(R=\cos{\theta}I+(1-\cos{\theta})\overrightarrow{n}\overrightarrow{n}^T+\sin{\theta}\overrightarrow{n}^{\wedge}\)。

        同时取迹可得:\(\mathbf{tr}(R)=1+2\cos{\theta}\)。所以就计算出了\(\theta=\arccos{\frac{\mathbf{tr}(R)-1}{2}}\)。

  4. 欧拉角

    1. 欧拉角的定义

      每个轴旋转一个特定的角度,但是有顺序要求,我们一般使用ZYX的顺序(称为RPY)。

    2. 欧拉角各个参数的意义

      1. R:Roll,偏航角
      2. P:Pitch,翻滚角
      3. Y:Yaw,俯仰角
    3. 欧拉角各个参数的计算

      通过传感器或者人为给出。不是吧不是吧,不会真有人用欧拉角吧?!【1】

      【注】【1】:万向锁问题(奇异性)问题——只要我们想用3个实数来表达3维旋转时,都会不可避免地碰到奇异性问题。所以很少用这样的旋转表述方式,一般用也只是用于人机交互中传入旋转角度,或者验证系统的算法,因为这样的表述对于人类来说是非常直观的。

  5. 四元数

    1. 四元数的定义

      \[q=(s,\overrightarrow{v})^{T}=(s,x,y,z)^{T}=s+xi+yj+zk
      \]
    2. 四元数各个参数的意义

      1. 实部\(s\)表示旋转程度:\(s=f(\theta)\);
      2. 虚部\(\overrightarrow{v}\)表示旋转轴:\(\overrightarrow{v}=k\overrightarrow{n}\);

        虚部\(\overrightarrow{v}\)的定义为某个点在三维直角系下的坐标,由于四元数表示对一个向量(或称为点)的旋转,用数学公式可以严谨地证明,当对\(\overrightarrow{v}\)进行\(q=(s,\overrightarrow{v})^{T}\)旋转时不变,所以\(\overrightarrow{v}\)表示旋转轴。

    3. 四元数各个参数的计算(利用旋转向量)

      1. 实部\(s\)的计算
        1. 四元数 \(\Longrightarrow\) 旋转矩阵
          \[\begin{aligned}
          R& = \overrightarrow{v}\overrightarrow{v}^{T}+s^2I+2s\overrightarrow{v}^{\wedge}+(\overrightarrow{v})^2
          \\\\
          \mathbf{tr}(R)&=4s^2-1
          \end{aligned}
          \]
        2. 旋转矩阵 \(\Longrightarrow\) 旋转向量
          \[\begin{aligned}
          \theta& = \arccos(\frac{\mathbf{tr}(R)-1}{2})=\arccos(2s^2-1)
          \\\\
          \theta& = 2\arccos{s}
          \\\\
          s& = \cos{\frac{\theta}{2}}
          \end{aligned}
          \]
      2. 虚部\(\overrightarrow{v}\)的计算
        1. 得到旋转轴

          旋转轴就是四元数的虚部\(\overrightarrow{v}\)。

        2. 将四元数单位化

          我们已经知道了实部\(s=\cos{\frac{\theta}{2}}\),所以虚部向量就只用除以一个\(\sin{\frac{\theta}{2}}\)就行了。

矩阵旋转-Eigen应用(QTCreator编辑器)的更多相关文章

  1. [LeetCode]Rotate Image(矩阵旋转)

    48. Rotate Image     Total Accepted: 69437 Total Submissions: 198781 Difficulty: Medium You are give ...

  2. 计蒜客模拟赛D1T1 蒜头君打地鼠:矩阵旋转+二维前缀和

    题目链接:https://nanti.jisuanke.com/t/16445 题意: 给你一个n*n大小的01矩阵,和一个k*k大小的锤子,锤子只能斜着砸,问只砸一次最多能砸到多少个1. 题解: 将 ...

  3. c++刷题(43/100)矩阵旋转打印

    题目1:矩阵旋转打印 输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字,例如,如果输入如下4 X 4矩阵: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 则 ...

  4. 利用neon技术对矩阵旋转进行加速

    一般的矩阵旋转操作都是对矩阵中的元素逐个操作,假设矩阵大小为m*n,那么时间复杂度就是o(mn).如果使用了arm公司提供的neon加速技术,则可以并行的读取多个元素,对多个元素进行操作,虽然时间复杂 ...

  5. C++矩阵库 Eigen 快速入门

    最近需要用 C++ 做一些数值计算,之前一直采用Matlab 混合编程的方式处理矩阵运算,非常麻烦,直到发现了 Eigen 库,简直相见恨晚,好用哭了. Eigen 是一个基于C++模板的线性代数库, ...

  6. C++矩阵库 Eigen 简介

    最近需要用 C++ 做一些数值计算,之前一直采用Matlab 混合编程的方式处理矩阵运算,非常麻烦,直到发现了 Eigen 库,简直相见恨晚,好用哭了. Eigen 是一个基于C++模板的线性代数库, ...

  7. leetcode48:矩阵旋转

    题目链接 输入一个N×N的方阵,要求不开辟新空间,实现矩阵旋转. 将点(x,y)绕原点顺时针旋转90度,变为(y,-x).原来的(-y,x)变为(x,y) class Solution(object) ...

  8. 洛谷P3933 Chtholly Nota Seniorious 【二分 + 贪心 + 矩阵旋转】

    威廉需要调整圣剑的状态,因此他将瑟尼欧尼斯拆分护符,组成了一个nnn行mmm列的矩阵. 每一个护符都有自己的魔力值.现在为了测试圣剑,你需要将这些护符分成 A,B两部分. 要求如下: 圣剑的所有护符, ...

  9. 2018 Multi-University Training Contest 4 Problem J. Let Sudoku Rotate 【DFS+剪枝+矩阵旋转】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=6341 Problem J. Let Sudoku Rotate Time Limit: 2000/100 ...

随机推荐

  1. c# DataGirdView动态刷新

    using MySql.Data.MySqlClient;using System; using System.Data; using System.Threading; using System.W ...

  2. 让 Java 中 if else 更优雅的几个小技巧

    对于一个高级 crud 工程师‍而言,if else 是写代码时使用频率最高的关键词之一,然而有时过多的 if else 会让我们优雅的 crud 代码显得不那么优雅,并且感到脑壳疼

  3. JPEG解码——(6)IDCT逆离散余弦变换

    本篇是该系列的第六篇,承接上篇IZigZag变换,介绍接下来的一个步骤--逆离散余弦变换,即逆零偏置前的一个步骤. 该步骤比较偏理论,其业务是对IZigZag变换后的数据,再进一步的处理,使其恢复DC ...

  4. JAVA题目:小芳的妈妈每天给她2.5元,她都会存起来,但是,每当这一天是存钱的第五题或者5的倍数的话,她都会去用掉6块钱。 问:至少经过多少天可以存到100块?

    1 /*题目:小芳的妈妈每天给她2.5元,她都会存起来, 2 但是,每当这一天是存钱的第五题或者5的倍数的话, 3 她都会去用掉6块钱. 4 问:至少经过多少天可以存到100块? 5 */ 6 /*分 ...

  5. html+css写出响应式侧边导航栏

    html部分:先写用div画好六个导航的卡片,再利用css添加响应效果 <div class='card-holder'> <div class='card-wrapper'> ...

  6. Kubernetes网络概念初探

    ------------恢复内容开始------------ Kubernetes网络是Kubernetes中一个核心概念.简而言之,Kubernetes网络模型可以确保集群上所有Kubernetes ...

  7. JDK8之后,在java语言这条路怎么走?

    前言 自2017年9月以来,Oracle按照免费的开源许可证(类似于Linux的许可证)提供JDK版本 .从Java SE 11(2018年9月,LTS)开始,Oracle不仅为开源许可下的所有用户免 ...

  8. day19.进程通信与线程1

    1 进程Queue介绍 1 进程间数据隔离,两个进程进行通信,借助于Queue 2 进程间通信:IPC -借助于Queue实现进程间通信 -借助于文件 -借助于数据库 -借助于消息队列:rabbitm ...

  9. 浅谈在c#中使用Zlib压缩与解压的方法

    作者:Compasslg 介绍 近期用c#开发一个游戏的存档编辑工具需要用 Zlib 标准的 Deflate 算法对数据进行解压. 在 StackOverflow 上逛了一圈,发现 c# 比较常用到的 ...

  10. C - The Suspects POJ - 1611(并查集)

    Severe acute respiratory syndrome (SARS), an atypical pneumonia of unknown aetiology, was recognized ...