网络模型mAP计算实现代码
一、mAP精度计算
这里首先介绍几个常见的模型评价术语,现在假设我们的分类目标只有两类,计为正例(positive)和负例(negtive)分别是:
1)True positives(TP): 被正确地划分为正例的个数,即实际为正例且被分类器划分为正例的实例数(样本数);
2)False positives(FP): 被错误地划分为正例的个数,即实际为负例但被分类器划分为正例的实例数;
3)False negatives(FN):被错误地划分为负例的个数,即实际为正例但被分类器划分为负例的实例数;
4)True negatives(TN): 被正确地划分为负例的个数,即实际为负例且被分类器划分为负例的实例数。
P
代表precision即准确率,计算公式为预测样本中实际正样本数 / 所有的正样本数 即 precision=TP/(TP+FP);
R
代表recall即召回率,计算公式为 预测样本中实际正样本数 / 预测的样本数即 Recall=TP/(TP+FN)=TP/P
一般来说,precision和recall是鱼与熊掌的关系,往往召回率越高,准确率越低
AP
AP 即 Average Precision即平均精确度
mAP
mAP 即 Mean Average Precision即平均AP值,是对多个验证集个体求平均AP值,作为 object dection中衡量检测精度的指标。
F
度量(F-measure),F度量涵盖了准确率和召回率这两个指标。其计算公式如下:F = 2 * P * R / (P + R)
P-R曲线
P-R曲线即 以 precision 和 recall 作为 纵、横轴坐标 的二维曲线。通过选取不同阈值时对应的精度和召回率画出
总体趋势,精度越高,召回越低,当召回达到1时,对应概率分数最低的正样本,这个时候正样本数量除以所有大于等于该阈值的样本数量就是最低的精度值。
另外,P-R曲线围起来的面积就是AP值,通常来说一个越好的分类器,AP值越高。
总结一下,在目标检测中,每一类都可以根据 recall 和 precision绘制P-R曲线,AP就是该曲线下的面积,mAP就是所有类AP的平均值。
二.评测代码
import tensorflow as tf
#精确率评价指标
def metric_precision(y_true,y_pred):
TP=tf.reduce_sum(y_true*tf.round(y_pred))
TN=tf.reduce_sum((1-y_true)*(1-tf.round(y_pred)))
FP=tf.reduce_sum((1-y_true)*tf.round(y_pred))
FN=tf.reduce_sum(y_true*(1-tf.round(y_pred)))
precision=TP/(TP+FP)
return precision
#召回率评价指标
def metric_recall(y_true,y_pred):
TP=tf.reduce_sum(y_true*tf.round(y_pred))
TN=tf.reduce_sum((1-y_true)*(1-tf.round(y_pred)))
FP=tf.reduce_sum((1-y_true)*tf.round(y_pred))
FN=tf.reduce_sum(y_true*(1-tf.round(y_pred)))
recall=TP/(TP+FN)
return recall
#F1-score评价指标
def metric_F1score(y_true,y_pred):
TP=tf.reduce_sum(y_true*tf.round(y_pred))
TN=tf.reduce_sum((1-y_true)*(1-tf.round(y_pred)))
FP=tf.reduce_sum((1-y_true)*tf.round(y_pred))
FN=tf.reduce_sum(y_true*(1-tf.round(y_pred)))
precision=TP/(TP+FP)
recall=TP/(TP+FN)
F1score=2*precision*recall/(precision+recall)
return F1score<br><br>
#编译阶段引用自定义评价指标示例
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy',
metric_precision,
metric_recall,
metric_F1score])
# AUC for a binary classifier
def auc(y_true, y_pred):
ptas = tf.stack([binary_PTA(y_true,y_pred,k) for k in np.linspace(0, 1, 1000)],axis=0)
pfas = tf.stack([binary_PFA(y_true,y_pred,k) for k in np.linspace(0, 1, 1000)],axis=0)
pfas = tf.concat([tf.ones((1,)) ,pfas],axis=0)
binSizes = -(pfas[1:]-pfas[:-1])
s = ptas*binSizes
return K.sum(s, axis=0)
#-----------------------------------------------------------------------------------------------------------------------------------------------------
# PFA, prob false alert for binary classifier
def binary_PFA(y_true, y_pred, threshold=K.variable(value=0.5)):
y_pred = K.cast(y_pred >= threshold, 'float32')
# N = total number of negative labels
N = K.sum(1 - y_true)
# FP = total number of false alerts, alerts from the negative class labels
FP = K.sum(y_pred - y_pred * y_true)
return FP/N
#-----------------------------------------------------------------------------------------------------------------------------------------------------
# P_TA prob true alerts for binary classifier
def binary_PTA(y_true, y_pred, threshold=K.variable(value=0.5)):
y_pred = K.cast(y_pred >= threshold, 'float32')
# P = total number of positive labels
P = K.sum(y_true)
# TP = total number of correct alerts, alerts from the positive class labels
TP = K.sum(y_pred * y_true)
return TP/P
#接着在模型的compile中设置metrics
# False Discovery Rate(FDR)
from sklearn.metrics import confusion_matrix
y_true = [0,0,0,0,0,0,,1,1,1,1,1]
y_pred = [0,0,0,0,0,0,,1,1,1,1,1]
tn, fp , fn, tp = confusion_matrix(y_true, y_pred).ravel()
fdr = fp / (fp + tp)
print(fdr)
网络模型mAP计算实现代码的更多相关文章
- 前端JS面试题汇总 Part 2 (null与undefined/闭包/foreach与map/匿名函数/代码组织)
原文:https://github.com/yangshun/front-end-interview-handbook/blob/master/questions/javascript-questio ...
- C++算法之大数加法计算的代码
如下代码段是关于C++算法之大数加法计算的代码,希望对大家有用. { int length; int index; int smaller; int prefix = 0; if(NULL == sr ...
- Javascript时间差计算函数代码实例
Javascript时间差计算函数代码实例 <script language="javascript"> Date.prototype.dateDiff = funct ...
- 基于ACCESS和ASP的SQL多个表查询与计算统计代码(一)
近期在写几个关于"Project - Subitem - Task"的管理系统,说是系统还是有点夸大了,基本就是一个多表查询调用和insert.update的数据库操作.仅仅是出现 ...
- 关于UDP的检验和计算(附代码)
关于UDP的检验和计算(附代码) 在下午的学习过程中https://www.cnblogs.com/roccoshi/p/13032356.html 有一张图讲述了UDP的校验方法, 如下: 老师只粗 ...
- 目标检测性能评价——关于mAP计算的思考
1. 基本要求 从直观理解,一个目标检测网络性能好,主要有以下表现: 把画面中的目标都检测到--漏检少 背景不被检测为目标--误检少 目标类别符合实际--分类准 目标框与物体的边缘贴合度高-- 定位准 ...
- asp.net中C#中计算时间差代码
我用的最简单的办法是 代码如下 复制代码 DateTime dtone = Convert.ToDateTime("2007-1-1 05:32:22");DateTime dtw ...
- 使用java8的StreamAPI对集合计算进行代码重构
方法: 查询出所有部门成员中年龄大于30的员工姓名 部门对象: 员工对象: 模拟数据: private static List<Dept> list=new ArrayList<De ...
- 计算Python代码运行时间长度方法
在代码中有时要计算某部分代码运行时间,便于分析. import time start = time.clock() run_function() end = time.clock() print st ...
随机推荐
- hdu4876 深搜+(随机枚举剪枝)
题意: 给你n个数,让你从选择k个数,然后排成一个环(k个数的顺序随意,但是排成一个环后就不能变了),然后可以在这个环上任意的找连续w个数(w<=k),可以找多次,得到一个值等于当前 ...
- DVWA之SQL注入考点小结
SQL Injection SQL Injection,即SQL注入,是指攻击者通过注入恶意的SQL命令,破坏SQL查询语句的结构,从而达到执行恶意SQL语句的目的.SQL注入漏洞的危害是巨大的,常常 ...
- MySQL UDF提权执行系统命令
目录 UDF UDF提权步骤 UDF提权复现(php环境) UDF UDF (user defined function),即用户自定义函数.是通过添加新函数,对MySQL的功能进行扩充,其实就像使用 ...
- Linux-鸟菜-2-主机规划与磁盘分区
Linux-鸟菜-2-主机规划与磁盘分区 开机流程: 1. BIOS:開機主動執行的韌體,會認識第一個可開機的裝置: 2. MBR:第一個可開機裝置的第一個磁區內的主要開機記錄區塊,內含開機管理程式: ...
- 【vue-07】vue-router
Vue-router官网 安装 vue-router是一个插件包,所以我们还是需要用npm 来进行安装.打开命令行工具,进入你的项目目录,输入下面命令. npm install vue-router ...
- big data-1
- Java对象内存分布
[deerhang] 创建对象的四种方式:new关键字.反射.Object.clone().unsafe方法 new和反射是通过调用构造器创建对象的,创建对象的时候使用invokespecial指令 ...
- 有趣的css—简单的下雨效果2.0版
简单的下雨效果2.0版 前言 笔者上一篇发布的文章有趣的css-简单的下雨效果中有位老哥给我提了一个很棒的建议,大致意思是波纹应该产生于雨滴的消失处. 这是按照老哥的建议完善后的效果图: 由于我制作G ...
- [操作系统知识储备,进程相关概念,开启进程的两种方式、 进程Queue介绍]
[操作系统知识储备,进程相关概念,开启进程的两种方式.进程Queue介绍] 操作系统知识回顾 为什么要有操作系统. 程序员无法把所有的硬件操作细节都了解到,管理这些硬件并且加以优化使用是非常繁琐的工作 ...
- ES6对象的新增方法的使用
Object.assign Object Object.assign(target, ...sources) 将所有可枚举属性的值从一个或多个源对象复制到目标对象 参数: target 目标对象 so ...