[cf1305G]Kuroni and Antihype
对整个过程构造一张有向图,其中$(x,y)\in E$当且仅当$x$把$y$加入,且边权为$a_{x}$
显然这是一棵外向树森林,并再做如下两个构造:
1.新建一个点$a_{0}=0$,将其向所有入度为0的点连边
2.将所有边变为无向边,且边权修改为$a_{x}+a_{y}$($x$和$y$为两端点)
显然最终得到的是一棵树,并且这棵树能被某个过程得到当且仅当$\forall (x,y)\in E,a_{x}\and a_{y}=0$
另一方面,初始答案即边权和,第一个构造中新增的边边权为0,第二个构造中即每一个点都额外产生了原来入度次贡献,而除了0以外其余点入度均为1(而$a_{0}=0$不需要考虑),那么最终答案即边权和-$\sum_{i=1}^{n}a_{i}$
由于后者固定,问题也即求$E=\{(x,y,a_{x}+a_{y})\mid 0\le x,y\le n$且$a_{x}\and a_{y}=0\}$的最大生成树
考虑Boruvka算法,即维护若干个集合(初始每一个点均作为一个集合),并不断加入所有集合(向集合外)最大的出边,注意到每一次集合数回减小一半,最终轮数即$o(\log n)$
在每一轮中,需要求出该最大出边,不妨对每一个点都求出该最大出边即可
而对于$a_{x}$,即需要求出权值是$U\oplus a_{x}$的子集(其中$U$为全集)中与$x$不在同一个连通块中且权值最大的点,对每一个集合预处理其子集权值最大的和不在同一个连通块中权值次大的即可
关于这个,做一个类似于高维前缀和的操作即可
时间复杂度为$o(n\alpha(n)+m2^{m}\log n)$(其中$m\approx 18$),可以通过

1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 200005
4 #define M 18
5 #define ll long long
6 #define pii pair<int,int>
7 #define fi first
8 #define se second
9 struct Data{
10 pii mx,cmx;
11 }g[1<<M];
12 int n,a[N],fa[N];
13 ll ans;
14 pii f[N];
15 int find(int k){
16 if (k==fa[k])return k;
17 return fa[k]=find(fa[k]);
18 }
19 void merge(int x,int y,int z){
20 x=find(x),y=find(y);
21 if (x!=y){
22 fa[x]=y;
23 ans+=z;
24 }
25 }
26 Data merge(Data x,Data y){
27 if (x.mx<y.mx)swap(x,y);
28 if (find(x.mx.se)==find(y.mx.se))swap(y.mx,y.cmx);
29 x.cmx=max(x.cmx,y.mx);
30 return x;
31 }
32 int main(){
33 scanf("%d",&n);
34 for(int i=1;i<=n;i++){
35 scanf("%d",&a[i]);
36 ans-=a[i];
37 }
38 for(int i=0;i<=n;i++)fa[i]=i;
39 while (1){
40 bool flag=0;
41 for(int i=1;i<=n;i++)
42 if (find(i)!=find(0)){
43 flag=1;
44 break;
45 }
46 if (!flag)break;
47 for(int i=0;i<(1<<M);i++)g[i].mx=g[i].cmx=make_pair(-1,-1);
48 for(int i=0;i<=n;i++)g[a[i]]=merge(g[a[i]],Data{make_pair(a[i],i),make_pair(-1,-1)});
49 for(int i=0;i<M;i++)
50 for(int j=0;j<(1<<M);j++)
51 if (j&(1<<i))g[j]=merge(g[j],g[j^(1<<i)]);
52 for(int i=0;i<=n;i++)f[i]=make_pair(-1,-1);
53 for(int i=0;i<=n;i++){
54 int pos=(a[i]^((1<<M)-1));
55 pii o=g[pos].mx;
56 if (o.fi>=0){
57 if (find(i)==find(o.se))o=g[pos].cmx;
58 if (o.fi>=0)f[find(i)]=max(f[find(i)],make_pair(o.fi+a[i],o.se));
59 }
60 }
61 for(int i=0;i<=n;i++)
62 if (f[i].fi>=0)merge(i,f[i].se,f[i].fi);
63 }
64 printf("%lld\n",ans);
65 return 0;
66 }
[cf1305G]Kuroni and Antihype的更多相关文章
- 2021record
2021-10-14 P2577 [ZJOI2004]午餐 2021-10-13 CF815C Karen and Supermarket(小小紫题,可笑可笑) P6748 『MdOI R3』Fall ...
- Codeforce-Ozon Tech Challenge 2020-D. Kuroni and the Celebration(交互题+DFS)
After getting AC after 13 Time Limit Exceeded verdicts on a geometry problem, Kuroni went to an Ital ...
- Codeforce-Ozon Tech Challenge 2020-C. Kuroni and Impossible Calculation(鸽笼原理)
To become the king of Codeforces, Kuroni has to solve the following problem. He is given n numbers a ...
- Codeforce-Ozon Tech Challenge 2020-B. Kuroni and Simple Strings(贪心)
B. Kuroni and Simple Strings time limit per test1 second memory limit per test256 megabytes inputsta ...
- Codeforce-Ozon Tech Challenge 2020-A. Kuroni and the Gifts
the i-th necklace has a brightness ai, where all the ai are pairwise distinct (i.e. all ai are diffe ...
- cf 1305 E. Kuroni and the Score Distribution
题目传送门:E. Kuroni and the Score Distribution 题目大意:给n和m,输出n个数,这些数里必须要有m对a[i]+a[j]==a[k] ( i < j < ...
- CF 1305E. Kuroni and the Score Distribution
题目大意:题目给定两个数n和m(1<=n<=5000,0<=m<=1e9)要求构造一个数列A,A中元素 大于等于1,小于等于1e9且满足严格递增 满足ai+aj=ak的(i,j ...
- Kuroni and the Punishment CodeForces - 1305F 随机函数mt19937 + 质因子分解
题意: 给你n个数,你每次操作可以对一个数加1或者减1,让你求你最少需要操作多少次可以使这n个数的公因子大于1 题解: 正常方法就是枚举质因子(假设质因子为x),然后对于这个数组中的数a[i],让a[ ...
- Codeforces 杂题集 2.0
记录一些没有写在其他随笔中的 Codeforces 杂题, 以 Problemset 题号排序 1326D2 - Prefix-Suffix Palindrome (Hard version) ...
随机推荐
- 编程模仿MySql客服端
写在前面 通过自己编写的Java代码程序,去模仿实现MySql客服端的简单功能,最终以控制台操作,很像在Dos窗口通过命令操作MySql数据库. 关键问题 在编写过程中遇到的一些小问题和一些值得留心注 ...
- Lynis 漏洞扫描工具部署及效果展示
Lynis 漏洞扫描工具部署及效果展示 介绍 Lynis是一个安全审计工具,它可以在Linux,macOS和其他基于Unix的系统上运行.Lynis的主要重点是执行系统的运行状况检查,它还有助于检测漏 ...
- Java(1)开发环境配置及第一个程序Hello World
作者:季沐测试笔记 原文地址:https://www.cnblogs.com/testero/p/15201468.html 博客主页:https://www.cnblogs.com/testero ...
- Java中的函数式编程(三)lambda表达式
写在前面 lambda表达式是一个匿名函数.在Java 8中,它和函数式接口一起,共同构建了函数式编程的框架. lambda表达式乍看像是匿名内部类的一种语法糖,但实际上,它们是两种本质不同的事物 ...
- 【Spring】IoC容器 - Spring Bean作用域Scope(含SpringCloud中的RefreshScope )
前言 上一章学习了[依赖来源],本章主要讨论SpringBean的作用域,我们这里讨论的Bean的作用域,很大程度都是默认只讨论依赖来源为[Spring BeanDefinition]的作用域,因为在 ...
- 【c++ Prime 学习笔记】第6章 函数
6.1 函数基础 函数定义包括:返回类型.函数名字.由0个或多个形参组成的列表以及函数体 通过调用运算符()来执行函数,它作用于一个表达式,该表达式是函数或函数指针.圆括号内是一个逗号隔开的实参列表, ...
- docker run 的基本用法
docker run 命令用来创建并启动一个容器 语法:docker run [options] image [command] [args-] 示例:docker run -dit -v 别名:容器 ...
- 算法:杨辉三角(Pascal's Triangle)
一.杨辉三角介绍 杨辉三角形,又称帕斯卡三角形.贾宪三角形.海亚姆三角形.巴斯卡三角形,是二项式系数的一种写法,形似三角形,在中国首现于南宋杨辉的<详解九章算法>得名,书中杨辉说明是引自贾 ...
- Python import cStringIO ImportError: No module named 'cStringIO'
From Python 3.0 changelog; The StringIO and cStringIO modules are gone. Instead, import the io modul ...
- 使用.NET6打造动态API
ApiLite是直接将Service层自动生成api路由,可以不用添加Controller,支持模块插件化,在项目开发中能够提高工作效率,降低代码量. 开发环境 .NET SDK 6.0.100-rc ...