[cf1137F]Matches Are Not a Child's Pla
显然compare操作可以通过两次when操作实现,以下仅考虑前两种操作
为了方便,将优先级最高的节点作为根,显然根最后才会被删除
接下来,不断找到剩下的节点中(包括根)优先级最高的节点,将其到其所在树根的所有节点从下到上依次加入到序列的开头并删除,不难发现最终得到的序列即为燃烧的顺序
将每一次删除的链上的边称为实边,其余边称为虚边,实际上就构成了一个类似于LCT的结构
一次$v$的修改操作对该LCT的影响,简单分析后不难发现即为将$v$换为根
考虑节点$v$的答案,即分为两部分:
1.定义其中一条实链(一个Splay)的优先级为其中优先级最大的节点(链尾),所有实链中优先级比$v$所在实链小的长度(指节点个数)和
2.$v$所在实链中比$v$浅的点个数(包括$v$自身)
前者可以在LCT修改的过程中再维护一个树状数组(以优先级为下标,长度为权值),后者直接在LCT中查询该节点(将其Splay到根)即可,将两者求和即为答案
时间复杂度为$o(n\log n)$,可以通过
1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 200005
4 struct Edge{
5 int nex,to;
6 }edge[N<<1];
7 int E,n,m,x,y,head[N],f[N<<1],st[N],fa[N],val[N],sz[N],rev[N],ch[N][2];
8 char s[11];
9 int lowbit(int k){
10 return (k&(-k));
11 }
12 void update(int k,int x){
13 while (k<=n+m){
14 f[k]+=x;
15 k+=lowbit(k);
16 }
17 }
18 int query(int k){
19 int ans=0;
20 while (k){
21 ans+=f[k];
22 k-=lowbit(k);
23 }
24 return ans;
25 }
26 int which(int k){
27 return ch[fa[k]][1]==k;
28 }
29 int check(int k){//返回1当且仅当不是根节点
30 return ch[fa[k]][which(k)]==k;
31 }
32 void upd(int k){
33 rev[k]^=1;
34 swap(ch[k][0],ch[k][1]);
35 }
36 void up(int k){
37 sz[k]=sz[ch[k][0]]+sz[ch[k][1]]+1;
38 }
39 void down(int k){
40 if (ch[k][0])val[ch[k][0]]=val[k];
41 if (ch[k][1])val[ch[k][1]]=val[k];
42 if (rev[k]){
43 upd(ch[k][0]);
44 upd(ch[k][1]);
45 rev[k]=0;
46 }
47 }
48 void rotate(int k){
49 int f=fa[k],g=fa[f],p=which(k);
50 fa[k]=g;
51 if (check(f))ch[g][which(f)]=k;
52 fa[ch[k][p^1]]=f,ch[f][p]=ch[k][p^1];
53 fa[f]=k,ch[k][p^1]=f;
54 up(f),up(k);
55 }
56 void splay(int k){
57 for(int i=k;;i=fa[i]){
58 st[++st[0]]=i;
59 if (!check(i))break;
60 }
61 while (st[0])down(st[st[0]--]);
62 for(int i=fa[k];check(k);i=fa[k]){
63 if (check(i)){
64 if (which(k)==which(i))rotate(i);
65 else rotate(k);
66 }
67 rotate(k);
68 }
69 }
70 void access(int k){
71 int lst=0;
72 while (k){
73 splay(k);
74 update(val[k],sz[ch[k][1]]-sz[k]);
75 ch[k][1]=lst,up(k);
76 lst=k,k=fa[k];
77 }
78 }
79 void make_root(int k){
80 access(k);
81 splay(k);
82 upd(k);
83 }
84 void add(int x,int y){
85 edge[E].nex=head[x];
86 edge[E].to=y;
87 head[x]=E++;
88 }
89 void dfs(int k,int f){
90 fa[k]=f,val[k]=k;
91 for(int i=head[k];i!=-1;i=edge[i].nex)
92 if (edge[i].to!=f){
93 dfs(edge[i].to,k);
94 val[k]=max(val[k],val[edge[i].to]);
95 }
96 update(val[k],1);
97 if (val[k]==k){
98 sz[k]=1;
99 return;
100 }
101 for(int i=head[k];i!=-1;i=edge[i].nex)
102 if ((edge[i].to!=f)&&(val[k]==val[edge[i].to])){
103 sz[k]=sz[edge[i].to]+1;
104 ch[k][1]=edge[i].to;
105 return;
106 }
107 }
108 void Update(int k){
109 make_root(k);
110 val[k]=++val[0];
111 update(val[k],sz[k]);
112 }
113 int Query(int k){
114 splay(k);
115 return query(val[k])-sz[ch[k][0]];
116 }
117 int main(){
118 scanf("%d%d",&n,&m);
119 memset(head,-1,sizeof(head));
120 for(int i=1;i<n;i++){
121 scanf("%d%d",&x,&y);
122 add(x,y),add(y,x);
123 }
124 dfs(n,0);
125 val[0]=n;
126 for(int i=1;i<=m;i++){
127 scanf("%s%d",s,&x);
128 if (s[0]=='u')Update(x);
129 if (s[0]=='w')printf("%d\n",Query(x));
130 if (s[0]=='c'){
131 scanf("%d",&y);
132 if (Query(x)<Query(y))printf("%d\n",x);
133 else printf("%d\n",y);
134 }
135 }
136 return 0;
137 }
[cf1137F]Matches Are Not a Child's Pla的更多相关文章
- CF1137F Matches Are Not a Child's Play(LCT思维题)
题目 CF1137F 很有意思的题目 做法 直接考虑带修改的做法,上一次最大值为u,这次修改v,则最大值为v了 我们发现:\(u-v\)这条链会留到最后,序列里的其他元素相对位置不变,这条链会\(u\ ...
- CF1137F Matches Are Not a Child's Play(树链剖分)
题面 我们定义一棵树的删除序列为:每一次将树中编号最小的叶子删掉,将该节点编号加入到当前序列的最末端,最后只剩下一个节点时将该节点的编号加入到结尾. 例如对于上图中的树,它的删除序列为:2 4 3 1 ...
- 【树链剖分 ODT】cf1137F. Matches Are Not a Child's Play
孔爷的杂题系列:LCT清新题/ODT模板题 题目大意 定义一颗无根树的燃烧序列为:每次选取编号最小的叶子节点形成的序列. 要求支持操作:查询一个点$u$在燃烧序列中的排名:将一个点的编号变成最大 $n ...
- CF1137F Matches Are Not a Child's Play
我们定义一棵树的删除序列为:每一次将树中编号最小的叶子删掉,将该节点编号加入到当前序列的最末端,最后只剩下一个节点时将该节点的编号加入到结尾.现在给出一棵n个节点的树,有m次操作: up v:将v号节 ...
- [Codeforces1137F]Matches Are Not a Child's Play——LCT+树状数组
题目链接: [Codeforces1137F]Matches Are Not a Child's Play 题目大意: 我们定义一棵树的删除序列为:每一次将树中编号最小的叶子删掉,将该节点编号加入到当 ...
- Codeforces 1137F Matches Are Not a Child's Play [LCT]
Codeforces 很好,通过这题对LCT的理解又深了一层. 思路 (有人说这是套路题,然而我没有见过/kk) 首先发现,删点可以从根那里往下删,非常难受,所以把权值最大的点提为根. 然后考虑\(x ...
- Codeforces 1137F - Matches Are Not a Child's Play(LCT)
Codeforces 题面传送门 & 洛谷题面传送门 考虑将一个点 \(x\) 的编号变为当前所有点编号最大值 \(+1\) 会对每个点的删除时间产生怎么样的影响.由于编号最大的点肯定是最后一 ...
- LCT[Link-Cut-Tree学习笔记]
部分摘抄于 FlashHu candy99 所以文章篇幅较长 请有足够的耐心(不是 其实不用学好splay再学LCT的-/kk (至少现在我平衡树靠fhq) 如果学splay的话- 也许我菜吧-LCT ...
- 多校联训 DS 专题
CF1039D You Are Given a Tree 容易发现,当 \(k\) 不断增大时,答案不断减小,且 \(k\) 的答案不超过 \(\lfloor\frac {n}{k}\rfloor\) ...
随机推荐
- Idea热部署功能
什么是Idea自动热部署? 热部署是指代码改动之后,调试过程中会服务自动重启,减少手动重启的麻烦,尤其是在微服务开发中,涉及到很多模块的调试更为重要. 如何开启热部署功能? 1.添加如下依赖到项目模块 ...
- 构建idea父工程
构建idea父工程 首先通过idea新建一个Maven项目: 选择本地Maven版本: 工程名称: 选择字符编码:utf-8 file -> Settings -> Editor -> ...
- java程序远程连接Linux服务器
JSCH或 Ganymed Ganymed: Ganymed SSH-2 for Java是用纯Java实现SSH-2协议的一个包. 可以利用它直接在Java程序中连接SSH服务器.官网地址为 htt ...
- VMware中Linux虚拟机与Windows主机共享文件夹
VMware下Linux虚拟机与Windows主机共享文件夹 1. 安装vm-tool 2. 开启共享文件夹 虚拟机->设置->选项->共享文件夹"右边选择"总是 ...
- 初识HTML02
HTML 超文本标记语言 什么是超文本标记语言 浏览器能够解释和解析的语言 通过元素的形式构建页面结构和填充内容 构建HTML页面 构建页面的步骤 创建一个扩展名为.html和.html的页面文件 向 ...
- BUAA_2020_软件工程_热身作业
项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任建) 这个作业的要求在哪里 热身作业要求 我在这个课程的目标 了解软件工程的技术,掌握工程化开发的能力 这个作业在哪个具体方面 ...
- docker run 的基本用法
docker run 命令用来创建并启动一个容器 语法:docker run [options] image [command] [args-] 示例:docker run -dit -v 别名:容器 ...
- camera HSYNC:VSYNC
HSYNC:行锁存,换行信号VSYNC:祯锁存,换页信号 320×240的屏,每一行需要输入320个脉冲来依次移位.锁存进一行的数据,然后来个HSYNC 脉冲换一行:这样依次输入240行之后换行同时来 ...
- 树莓派-openeuler安装
一.安装准备 1.硬件安装 2.下载openeuler镜像 3.sd卡格式化 sd格式化工具 4.镜像校验 二.镜像烧写 选择树莓派官方烧写工具,耐心等待... 三.网络配置 1.寻找树莓派的ip地址 ...
- P2472 [SCOI2007]蜥蜴(最大流)
P2472 [SCOI2007]蜥蜴 自己第一道独立做题且一遍AC的网络流题纪念... 看到这道题我就想到网络流建图的方式了... 首先根据每个高度,我们将每个点拆成两个点限流.之后根据跳的最大距离, ...