Python小白的数学建模课-A1.2021年数维杯C题(运动会优化比赛模式探索)探讨
Python小白的数学建模课 A1-2021年数维杯C题(运动会优化比赛模式探索)探讨。
运动会优化比赛模式问题,是公平分配问题
『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达人。
2021第六届数维杯大学生数学建模 赛题已于5月27日公布,C题是"运动会优化比赛模式探索"。本文对赛题进行一些分析讨论。由于竞赛时间为 2021年5月27-30日20:00,目前尚处于竞赛中,本文仅做初步分析。
1. 赛题内容(运动会优化比赛模式探索)
在大学的运动会中,由于大学各学院同学人数与性别之间的差异很大,而且部分学院招收的体育特长生也参加运动会,这就导致各学院在运动会的成绩差异很大。部分学院常年排名领先,而另一些学院不论如何努力也很难取得很好的成绩,从而影响大家的参与热情。因此,我们需要研究如何改革赛制,以实现保障公平、兼顾效率的目标。
目前,某大学运动会的积分规则为:第一名得9分,第二名至第八名获得7至1分;各学院男生和女生累积得分最终构成团体得分。附件1中给出了该大学20个学院,104个专业,共计28523名学生的分布情况数据。本文将结合此数据,研究以下问题:
问题1:如果比赛允许若干学院合并后共同参加比赛,如何设计一个分组数量不低于12个组、各组人员总数和男女性别比较为均衡的优化分配模型?并对该分组方案的公平指数进行讨论。
问题2:如果对各学院按照甲组、乙组分类的模式进行比赛,如何设计一个最优的甲乙分组方案?并对该分组方案的公平指数进行讨论。
问题3:如果体育特长生可以跨学院参加比赛,如何设计一个尽量保障各学院比赛实力更为均衡的方案?如果特长生不参加比赛,如何设计一个对各学院相对公平的加权积分方案?
问题4:通过计算机仿真模拟或理论推导,证明上述四种优化比赛模式哪个更好?
欢迎关注『Python小白的数学建模课 @ Youcans』 系列,持续更新
Python小白的数学建模课-01.新手必读
Python小白的数学建模课-02.数据导入
Python小白的数学建模课-03.线性规划
[Python小白的数学建模课-04.整数规划]
Python数模笔记-PuLP库
Python数模笔记-StatsModels统计回归
Python数模笔记-Sklearn
Python数模笔记-NetworkX
Python数模笔记-模拟退火算法
2. 赛题解读(运动会优化比赛模式探索)
赛题共有四个问题,问题 1~3 要求对于 4种运动会赛制改革的思路要求,分别设计具体的实现方案,以达到各参赛单位的公平性最优。问题 4 是比较所设计的 4种方案,哪种方案的公平性最好。
对于公平,每个人会有不同的理解。赛题也给出了多种不同的要求,即问题 1~3,分别体现出不同的追求公平的思想,也就是对公平的不同理解。
问题 1 通过合并组队,使各组人员总数和男女性别比较为均衡,这种思想是实现人数、比例的均衡。问题 2 通过分成甲组乙组比赛,使不同学院都有机会获得积分,这种思想是根据现有条件分类以减小使同类中个体的差异。
问题 3 的第一问要求“各学院比赛实力更为均衡”,这与“各学院/参赛单位相对公平”的含义并不完全相同,但是也可以通过假设将它们解释为同一概念,我认为各学院实力更均衡,就能“使各参赛单位相对公平”,这么想、这么假设也没错吧。
问题 3 的第二问要求“对各学院相对公平的加权积分方案”,与“各学院比赛实力更为均衡”是不同的,但也是另一种“使各参赛单位相对公平”的思路或方案,也可以通过假设使这一目标更具体、更容易以量化指标描述。
问题4 是不言而喻的。如果解决了问题 1~3,在每个问题的条件下已经提出了 4种设计方案,显然这些方案不是拍脑袋蒙出来的,而是按照某种评价指标优化而得到的,那么只要对比这 4种方案的指标性能,就可以证明其中哪一种优化比赛方式更好。
如果只考虑问题 1~3,虽然总的目标都是“相对公平”,但具体要求、具体目标也有细微差异。因此,对于每个问题,是可以设计不同的具体量化的优化指标函数的。
但是,考虑到问题 4的需要,也可以构造统一的量化优化指标函数,这对于解答问题 4 特别有利,直接比较问题 1~3 的统一量化指标就得到答案了。
因此,在解决问题 1~3 时,虽然是按照相应的评价指标进行优化,但各问题还要有统一的评价指标的。由于问题 1~3 的要求基本上都是“相对公平”,所以采用统一的评价指标也是完全合理、可行的。
3. 优化目标
问题 1 ~3 都是优化问题,要求根据不同要求或者说约束条件设计优化方案。
那么,首先要考虑优化目标是什么,能不能提出可量化、可计算的优化目标函数。不难看出,背景资料和每个问题中都涉及”公平“:问题 1、2 明确要求讨论 ”公平指数“,问题 3 要求设计”更为均衡“、”相对公平“的方案,问题 4 要求比较哪种优化模式更好。如何比较,根据什么比较,就是”公平“的程度,就是题目中所说的”公平指数“。
什么是”公平指数“,如何量化公平指数,给出公平指数的数学表达式?
注意,问题 1 的原文是 “各组人员总数和男女性别比较为均衡的优化分配模型”,并“讨论方案的公平指数”;问题 2 的原文是“最优的甲乙分组方案”,并“讨论方案的公平指数”。因此,求解这两个问题时的优化目标不是“公平指数”,但需要计算“公平指数”并与最初的方案进行比较,以展开讨论,并用于问题 4 的求解。
4. 公平分配问题
4.1 什么是公平分配?
分配公平是个人对所获报酬的公正知觉,也就是依据一定的标准对分配最终结果的评价,亦称结果公平。分配公平主要表现为个人消费品分配的相对公平,要求社会成员之间的收入差距不能过于悬殊。个人收入的社会分配是否公平,不取决于有没有差距,而取决于这种差距是否合法、合情合理、合乎民生发展。
4.2 公平指数
绝对不公平度
相对不公平度
4.3 公平分配问题常用算法
限于时间,本文持续更新后发布...
版权说明:
欢迎关注『Python小白的数学建模课 @ Youcans』原创作品
CSDN 原创作品,转载必须标注原文链接。
Copyright 2021 Youcans, XUPT
Crated:2021-05-27
欢迎关注『Python小白的数学建模课 @ Youcans』系列,每周持续更新
Python小白的数学建模课-01.新手必读
Python小白的数学建模课-02.数据导入
Python小白的数学建模课-03.线性规划
[Python小白的数学建模课-04.整数规划]
Python数模笔记-StatsModels 统计回归(1)简介
Python数模笔记-StatsModels 统计回归(2)线性回归
Python数模笔记-StatsModels 统计回归(3)模型数据的准备
Python数模笔记-StatsModels 统计回归(4)可视化
Python数模笔记-Sklearn (1)介绍
Python数模笔记-Sklearn (2)聚类分析
Python数模笔记-Sklearn (3)主成分分析
Python数模笔记-Sklearn (4)线性回归
Python数模笔记-Sklearn (5)支持向量机
Python数模笔记-模拟退火算法(1)多变量函数优化
Python数模笔记-模拟退火算法(2)约束条件的处理
Python数模笔记-模拟退火算法(3)整数规划问题
Python数模笔记-模拟退火算法(4)旅行商问题
Python数模笔记-NetworkX(1)图的操作
Python数模笔记-NetworkX(2)最短路径
Python数模笔记-NetworkX(3)条件最短路径
Python数模笔记-NetworkX(4)最小生成树
Python数模笔记-NetworkX(5)关键路径法
Python小白的数学建模课-A1.2021年数维杯C题(运动会优化比赛模式探索)探讨的更多相关文章
- Python小白的数学建模课-A1.国赛赛题类型分析
分析赛题类型,才能有的放矢. 评论区留下邮箱地址,送你国奖论文分析 『Python小白的数学建模课 @ Youcans』 带你从数模小白成为国赛达人. 1. 数模竞赛国赛 A题类型分析 年份 题目 要 ...
- Python小白的数学建模课-04.整数规划
整数规划与线性规划的差别只是变量的整数约束. 问题区别一点点,难度相差千万里. 选择简单通用的编程方案,让求解器去处理吧. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达 ...
- Python小白的数学建模课-05.0-1规划
0-1 规划不仅是数模竞赛中的常见题型,也具有重要的现实意义. 双十一促销中网购平台要求二选一,就是互斥的决策问题,可以用 0-1规划建模. 小白学习 0-1 规划,首先要学会识别 0-1规划,学习将 ...
- Python小白的数学建模课-A3.12 个新冠疫情数模竞赛赛题与点评
新冠疫情深刻和全面地影响着社会和生活,已经成为数学建模竞赛的背景帝. 本文收集了与新冠疫情相关的的数学建模竞赛赛题,供大家参考,欢迎收藏关注. 『Python小白的数学建模课 @ Youcans』带你 ...
- Python小白的数学建模课-06 固定费用问题
Python 实例介绍固定费用问题的建模与求解. 学习 PuLP工具包中处理复杂问题的快捷使用方式. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达人. 前文讲到几种典型 ...
- Python小白的数学建模课-07 选址问题
选址问题是要选择设施位置使目标达到最优,是数模竞赛中的常见题型. 小白不一定要掌握所有的选址问题,但要能判断是哪一类问题,用哪个模型. 进一步学习 PuLP工具包中处理复杂问题的字典格式快捷建模方法. ...
- Python小白的数学建模课-09 微分方程模型
小白往往听到微分方程就觉得害怕,其实数学建模中的微分方程模型不仅没那么复杂,而且很容易写出高水平的数模论文. 本文介绍微分方程模型的建模与求解,通过常微分方程.常微分方程组.高阶常微分方程 3个案例手 ...
- Python小白的数学建模课-10.微分方程边值问题
小白往往听到微分方程就觉得害怕,其实数学建模中的微分方程模型不仅没那么复杂,而且很容易写出高水平的数模论文. 本文介绍微分方程模型边值问题的建模与求解,不涉及算法推导和编程,只探讨如何使用 Pytho ...
- Python小白的数学建模课-03.线性规划
线性规划是很多数模培训讲的第一个算法,算法很简单,思想很深刻. 要通过线性规划问题,理解如何学习数学建模.如何选择编程算法. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛 ...
随机推荐
- Day05_18_类和对象的含义与关系
Java 类和对象 类的含义? 类属于引用数据类型,java语言中所有的.class都属于引用数据类型, 在类体当中,方法体之外定义的变量被称为 成员变量,成员变量若没有赋值,系统会默认赋值为0: 先 ...
- 实战项目部署应用到kubernetes流程(jenkins+docker+k8s)
说明 通过jenkins构建java应用程序发布到k8s集群中 本文已一个大数据的java项目来演示构建部署过程 支持发布和回滚 支持一套模板应用不同项目 k8s基础准备 创建项目名称空间 [root ...
- 一款轻量级的声明式http调用工具!
前沿 项目中我们经常会使用HTTP工具向外部的REST接口发送请求,大家一般使用Okhttp,或者java的HttpClient发起,今天给大家介绍一款轻量级声明式的Http库(FeignClient ...
- maven自动化构建工具
目录结构: 一.Maven简介 二.Maven核心概念 三.Maven的使用 四.Maven在IDEA中的应用 五.依赖管理 六.Maven常用设置 ------------------------- ...
- PAT归纳总结——关于二叉树的一些总结
今天是6月26日到下个月的这个时候已经考过试了,为了让自己考一个更高的分数,所以我打算把PAT的相关题型做一个总结.目前想到的方法就是将相关的题型整理到一起然后,针对这种题型整理出一些方法. 二叉树的 ...
- 908. Smallest Range I
Given an array A of integers, for each integer A[i] we may choose any x with -K <= x <= K, and ...
- ASP.NET Core 存储session取不到值
该项目是一个mvc项目,我使用session存储登录后的用户信息,然后发现登录信息存储到session正常,这个时候立马去获取也正常 但是如果我跳转到首页后,再去获取session信息,发现sessi ...
- 07- 移动端app弱网测试与fiddle弱网测试
从下面几个点了解弱网测试: 什么样的网络属于弱网. 低于2g速率的时候都属于弱网,也可以将3g划分为弱网,一般WiFi不纳入弱网范畴. 为什么要进行弱网测试 ①按照移动特定,各种网络连接协议不同,导致 ...
- css单位介绍em ex ch rem vw vh vm cm mm in pt pc px
长度单位主要有以下几种em ex ch rem vw vh vm cm mm in pt pc px %,大概可以分为几种"绝对单位"和"相对单位"和" ...
- Google字体API使用简单示例
一.前面的话 Google总会做些造福大众的事情,例如提供了web在线字体的API,这玩意其实去年就有了,但是字体种类手指头+脚趾头就可以数出来.but 最近,貌似Google对字体API进行了升级, ...