LRU 缓存介绍

我们平时总会有一个电话本记录所有朋友的电话,但是,如果有朋友经常联系,那些朋友的电话号码不用翻电话本我们也能记住,但是,如果长时间没有联系了,要再次联系那位朋友的时候,我们又不得不求助电话本,但是,通过电话本查找还是很费时间的。但是,我们大脑能够记住的东西是一定的,我们只能记住自己最熟悉的,而长时间不熟悉的自然就忘记了。

其实,计算机也用到了同样的一个概念,我们用缓存来存放以前读取的数据,而不是直接丢掉,这样,再次读取的时候,可以直接在缓存里面取,而不用再重新查找一遍,这样系统的反应能力会有很大提高。但是,当我们读取的个数特别大的时候,我们不可能把所有已经读取的数据都放在缓存里,毕竟内存大小是一定的,我们一般把最近常读取的放在缓存里(相当于我们把最近联系的朋友的姓名和电话放在大脑里一样)。

LRU 缓存利用了这样的一种思想。LRU 是 Least Recently Used 的缩写,翻译过来就是“最近最少使用”,也就是说,LRU 缓存把最近最少使用的数据移除,让给最新读取的数据。而往往最常读取的,也是读取次数最多的,所以,利用 LRU 缓存,我们能够提高系统的 performance。

实现

要实现 LRU 缓存,我们首先要用到一个类 LinkedHashMap。

用这个类有两大好处:一是它本身已经实现了按照访问顺序的存储,也就是说,最近读取的会放在最前面,最最不常读取的会放在最后(当然,它也可以实现按照插入顺序存储)。第二,LinkedHashMap 本身有一个方法用于判断是否需要移除最不常读取的数,但是,原始方法默认不需要移除(这是,LinkedHashMap 相当于一个linkedlist),所以,我们需要 override 这样一个方法,使得当缓存里存放的数据个数超过规定个数后,就把最不常用的移除掉。关于 LinkedHashMap 中已经有详细的介绍。

代码如下:(可直接复制,也可以通过LRUcache-Java下载)

import java.util.LinkedHashMap;
import java.util.Collection;
import java.util.Map;
import java.util.ArrayList; /**
* An LRU cache, based on <code>LinkedHashMap</code>.
*
* <p>
* This cache has a fixed maximum number of elements (<code>cacheSize</code>).
* If the cache is full and another entry is added, the LRU (least recently
* used) entry is dropped.
*
* <p>
* This class is thread-safe. All methods of this class are synchronized.
*
* <p>
* Author: Christian d'Heureuse, Inventec Informatik AG, Zurich, Switzerland<br>
* Multi-licensed: EPL / LGPL / GPL / AL / BSD.
*/
public class LRUCache<K, V> {
private static final float hashTableLoadFactor = 0.75f;
private LinkedHashMap<K, V> map;
private int cacheSize; /**
* Creates a new LRU cache. 在该方法中,new LinkedHashMap<K,V>(hashTableCapacity,
* hashTableLoadFactor, true)中,true代表使用访问顺序
*
* @param cacheSize
* the maximum number of entries that will be kept in this cache.
*/
public LRUCache(int cacheSize) {
this.cacheSize = cacheSize;
int hashTableCapacity = (int) Math
.ceil(cacheSize / hashTableLoadFactor) + 1;
map = new LinkedHashMap<K, V>(hashTableCapacity, hashTableLoadFactor,
true) {
// (an anonymous inner class)
private static final long serialVersionUID = 1; @Override
protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
return size() > LRUCache.this.cacheSize;
}
};
} /**
* Retrieves an entry from the cache.<br>
* The retrieved entry becomes the MRU (most recently used) entry.
*
* @param key
* the key whose associated value is to be returned.
* @return the value associated to this key, or null if no value with this
* key exists in the cache.
*/
public synchronized V get(K key) {
return map.get(key);
} /**
* Adds an entry to this cache. The new entry becomes the MRU (most recently
* used) entry. If an entry with the specified key already exists in the
* cache, it is replaced by the new entry. If the cache is full, the LRU
* (least recently used) entry is removed from the cache.
*
* @param key
* the key with which the specified value is to be associated.
* @param value
* a value to be associated with the specified key.
*/
public synchronized void put(K key, V value) {
map.put(key, value);
} /**
* Clears the cache.
*/
public synchronized void clear() {
map.clear();
} /**
* Returns the number of used entries in the cache.
*
* @return the number of entries currently in the cache.
*/
public synchronized int usedEntries() {
return map.size();
} /**
* Returns a <code>Collection</code> that contains a copy of all cache
* entries.
*
* @return a <code>Collection</code> with a copy of the cache content.
*/
public synchronized Collection<Map.Entry<K, V>> getAll() {
return new ArrayList<Map.Entry<K, V>>(map.entrySet());
} // Test routine for the LRUCache class.
public static void main(String[] args) {
LRUCache<String, String> c = new LRUCache<String, String>(3);
c.put("1", "one"); // 1
c.put("2", "two"); // 2 1
c.put("3", "three"); // 3 2 1
c.put("4", "four"); // 4 3 2
if (c.get("2") == null)
throw new Error(); // 2 4 3
c.put("5", "five"); // 5 2 4
c.put("4", "second four"); // 4 5 2
// Verify cache content.
if (c.usedEntries() != 3)
throw new Error();
if (!c.get("4").equals("second four"))
throw new Error();
if (!c.get("5").equals("five"))
throw new Error();
if (!c.get("2").equals("two"))
throw new Error();
// List cache content.
for (Map.Entry<String, String> e : c.getAll())
System.out.println(e.getKey() + " : " + e.getValue());
}
}

LinkedHashMap 与 LRUcache的更多相关文章

  1. java LinkedHashMap实现LRUCache缓存

    package java_map; import java.util.Collections; import java.util.LinkedHashMap; import java.util.Map ...

  2. Java集合之LinkedHashMap

    一.初识LinkedHashMap 上篇文章讲了HashMap.HashMap是一种非常常见.非常有用的集合,但在多线程情况下使用不当会有线程安全问题. 大多数情况下,只要不涉及线程安全问题,Map基 ...

  3. LruCache算法原理及实现

    LruCache算法原理及实现 LruCache算法原理 LRU为Least Recently Used的缩写,意思也就是近期最少使用算法.LruCache将LinkedHashMap的顺序设置为LR ...

  4. 图解集合6:LinkedHashMap

    初识LinkedHashMap 上两篇文章讲了HashMap和HashMap在多线程下引发的问题,说明了,HashMap是一种非常常见.非常有用的集合,并且在多线程情况下使用不当会有线程安全问题. 大 ...

  5. Java中常见数据结构Map之LinkedHashMap

    前面已经说完了HashMap, 接着来说下LinkedHashMap. 看到Linked就知道它是有序的Map,即插入顺序和取出顺序是一致的, 究竟是怎样做到的呢? 下面就一窥源码吧. 1, Link ...

  6. LruCache的使用及原理

    采用LRU算法实现的话就是将最老的数据删掉.利用LRU缓存,我们能够提高系统的性能.   一,是它本身已经实现了按照访问顺序的存储,也就是说,最近读取的会放在最前面,最不常读取的会放在最后(当然,它也 ...

  7. 集合之LinkedHashMap(含JDK1.8源码分析)

    一.前言 大多数的情况下,只要不涉及线程安全问题,map都可以使用hashMap,不过hashMap有一个问题,hashMap的迭代顺序不是hashMap的存储顺序,即hashMap中的元素是无序的. ...

  8. Java HashMap的死循环 以及 LRUCache的正确实现

    今天RP爆发,16核服务器load飙到30多,cpu使用情况全部99%以上. 从jstack中分析发现全部线程都堵在map.transfer处,如下: "pool-10-thread-23& ...

  9. 集合(六)LinkedHashMap

    上两篇文章讲了HashMap和HashMap在多线程下引发的问题,说明了,HashMap是一种非常常见.非常有用的集合,并且在多线程情况下使用不当会有线程安全问题. 大多数情况下,只要不涉及线程安全问 ...

随机推荐

  1. 树上染色+可怜与超市(树状DP)

    这两道题是学长精心准备的,想了很长时间,比较经典. 第一题 树上染色 有一棵点数为 N的树,树边有边权.给你一个在 0∼N之内的正整数 K,你要在这棵树中选择 K 个点,将其染成黑色,并将其他的 N− ...

  2. C#《大话设计模式》之模板方法模式学习笔记

    static void Main(string[] args) { Console.WriteLine("学生甲抄的试卷:"); TestPaper A = new TestPap ...

  3. CMD批处理(2)——批处理常用符号总结

    @ 一般在它之后紧跟一条语句,则命令或语句本身在执行的时候不会显示在屏幕上. 例.创建一个test1.bat脚本文件,输入以下内容 echo apause@echo b@pause 双击test1.b ...

  4. 分布式事务与Seate框架(3)——Seata的AT模式实现原理

    前言 在上两篇博文(分布式事务与Seate框架(1)--分布式事务理论.分布式事务与Seate框架(2)--Seata实践)中已经介绍并实践过Seata AT模式,这里一些例子与概念来自这两篇(特别是 ...

  5. 案例 | 腾讯广告 AMS 的容器化之路

    作者 张煜,15年加入腾讯并从事腾讯广告维护工作.20年开始引导腾讯广告技术团队接入公司的TKEx-teg,从业务的日常痛点并结合腾讯云原生特性来完善腾讯广告自有的容器化解决方案 项目背景 腾讯广告承 ...

  6. 环境安装——MySQL安装

    @ 目录 一文教会你安装与卸载MySQL 1. 官网下载 2. 文件下载 3. 卸载步骤 4. 安装步骤 5. MySQL配置 6. 安装出现的问题 6.1 如果出现了最后一步卡死的状态的话,不要慌: ...

  7. 乘风破浪,遇见华为鸿蒙智能终端系统(HarmonyOS 2),打造面向全场景的分布式操作系统

    什么是鸿蒙智能终端系统(HarmonyOS 2) HarmonyOS 是新一代的智能终端操作系统,为不同设备的智能化.互联与协同提供了统一的语言.带来简洁,流畅,连续,安全可靠的全场景交互体验. ht ...

  8. Jenkins之搭建部署

    一.部署环境 操作系统:Centos7 软件: apache-tomcat-9.0.48--地址:https://tomcat.apache.org/download-90.cgi jdk-8u291 ...

  9. SpringBoot:springboot整合eureka报错 Unable to start embedded Tomcat

    报错信息: org.springframework.context.ApplicationContextException: Unable to start web server; nested ex ...

  10. 删除表的语句(drop truncate delete)

    p.p1 { margin: 0; font: 12px ".PingFang SC" } p.p2 { margin: 0; font: 12px "Helvetica ...