最短路径算法:弗洛伊德(Floyd-Warshall)算法
一、算法介绍
Floyd-Warshall算法(英语:Floyd-Warshall algorithm),中文亦称弗洛伊德算法,是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权(但不可存在负权回路)的最短路径问题,同时也被用于计算有向图的传递闭包。Floyd-Warshall算法的时间复杂度为 O(N3),空间复杂度为 O(N2),因时间复杂度比较高,不适合计算大量数据。
二、算法原理
Floyd-Warshall算法的原理是动态规划,Floyd算法适用于APSP(All Pairs Shortest Paths,多源最短路径)。
设 Di,j,k 为从 i 到 j 的只以 (1..k) 集合中的节点为中间节点的最短路径的长度。
- 若最短路径经过点 k,则 Di,j,k = Di,k,k-1 + Dk,j,k-1;
- 若最短路径不经过点 k,则 Di,j,k =Di,j,k-1。
因此,Di,j,k = min (Di,j,k-1, Di,k,k-1 + Dk,j,k-1)。
1 for (k = 0; k < V; k++) {
2 for (i = 0; i < V; i++) {
3 for (j = 0; j < V; j++) {
4 if (dist[i][j] > dist[i][k] + dist[k][j]) {
5 dist[i][j] = dist[i][k] + dist[k][j];
6 }
7 }
8 }
9 }
输入矩阵:
1 int[][] graph = {
2 {0, 5, INF, 10},
3 {INF, 0, 3, INF},
4 {INF, INF, 0, 1},
5 {INF, INF, INF, 0}
6 };
输出结果:
1 Shortest distance matrix :
2 0 5 8 9
3 INF 0 3 4
4 INF INF 0 1
5 INF INF INF 0
初始化与输入图矩阵相同的求解矩阵。然后,我们通过将所有顶点视为中间顶点来更新解矩阵。这个思想是一个接一个地选取所有顶点并更新所有最短路径,其中包括所选取的顶点作为最短路径中的中间顶点。
源代码:
1 package algorithm.shortestpath;
2
3 public class AllPairShortestPath {
4 final static int INF = 99999, V = 4;
5
6 public void floydWarshall(int[][] graph) {
7 int[][] dist = new int[V][V];
8 int i, j ,k;
9 for (i = 0; i < V; i++) {
10 for (j = 0; j < V; j++) {
11 dist[i][j] = graph[i][j];
12 }
13 }
14 for (k = 0; k < V; k++) {
15 for (i = 0; i < V; i++) {
16 for (j = 0; j < V; j++) {
17 if (dist[i][j] > dist[i][k] + dist[k][j]) {
18 dist[i][j] = dist[i][k] + dist[k][j];
19 }
20 }
21 }
22 }
23 printSoultion(dist);
24 }
25
26 private void printSoultion(int[][] dist) {
27 System.out.println("The following matrix shows the shortest "+
28 "distances between every pair of vertices");
29 for (int i = 0; i < V; ++i) {
30 for (int j = 0; j < V; ++j) {
31 if (dist[i][j] == INF) {
32 System.out.print("INF ");
33 } else {
34 System.out.print(dist[i][j] + " ");
35 }
36 }
37 System.out.println();
38 }
39 }
40
41 public static void main(String[] args) {
42 /* 输入带权重矩阵
43 10
44 (0)------->(3)
45 | /|\
46 5 | |
47 | | 1
48 \|/ |
49 (1)------->(2)
50 3 */
51 int[][] graph = {
52 {0, 5, INF, 10},
53 {INF, 0, 3, INF},
54 {INF, INF, 0, 1},
55 {INF, INF, INF, 0}
56 };
57
58 AllPairShortestPath a = new AllPairShortestPath();
59
60 a.floydWarshall(graph);
61 }
62 }
最短路径算法:弗洛伊德(Floyd-Warshall)算法的更多相关文章
- 数据结构与算法——弗洛伊德(Floyd)算法
介绍 和 Dijkstra 算法一样,弗洛伊德(Floyd)算法 也是一种用于寻找给定的加权图中顶点间最短路径的算法.该算法名称以创始人之一.1978 年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特 ...
- JS实现最短路径之弗洛伊德(Floyd)算法
弗洛伊德算法是实现最小生成树的一个很精妙的算法,也是求所有顶点至所有顶点的最短路径问题的不二之选.时间复杂度为O(n3),n为顶点数. 精妙之处在于:一个二重初始化,加一个三重循环权值修正,完成了所有 ...
- Floyd—Warshall算法
我们用DP来求解任意两点间的最短路问题 首先定义状态:d[k][i][k]表示使用顶点1~k,i,j的情况下,i到j的最短路径 (d[0][i][j]表示只使用i和j,因此d[0][i][j] = c ...
- 图论之最短路径(1)——Floyd Warshall & Dijkstra算法
开始图论学习的第二部分:最短路径. 由于知识储备还不充足,暂时不使用邻接表的方法来计算. 最短路径主要分为两部分:多源最短路径和单源最短路径问题 多源最短路径: 介绍最简单的Floyd Warshal ...
- 算法:最短路径之弗洛伊德(Floyd)算法
https://cloud.tencent.com/developer/article/1012420 为了能讲明白弗洛伊德(Floyd)算法的主要思想,我们先来看最简单的案例.图7-7-12的左图是 ...
- 最短路径 - 弗洛伊德(Floyd)算法
为了能讲明白弗洛伊德(Floyd)算法的主要思想,我们先来看最简单的案例.图7-7-12的左图是一个简单的3个顶点的连通网图. 我们先定义两个二维数组D[3][3]和P[3][3], D代表顶点与顶点 ...
- 图的最短路径---弗洛伊德(Floyd)算法浅析
算法介绍 和Dijkstra算法一样,Floyd算法也是为了解决寻找给定的加权图中顶点间最短路径的算法.不同的是,Floyd可以用来解决"多源最短路径"的问题. 算法思路 算法需要 ...
- 最短路径问题:弗洛伊德算法(Floyd)
Floyd算法 1.定义概览 Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被 ...
- 最短路径:Dijkstra & Floyd 算法图解,c++描述
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- 最小生成树(prime算法 & kruskal算法)和 最短路径算法(floyd算法 & dijkstra算法)
一.主要内容: 介绍图论中两大经典问题:最小生成树问题以及最短路径问题,以及给出解决每个问题的两种不同算法. 其中最小生成树问题可参考以下题目: 题目1012:畅通工程 http://ac.jobdu ...
随机推荐
- 【转】shell中的$0 $n $# $* $@ $? $$ 变量 if case for while
shell中的$0 $n $# $* $@ $? $$ shell 编程 | shift 命令用法笔记 $0当前脚本的文件名 $n传递给脚本或函数的参数.n 是一个数字,表示第几个参数.例如,第一个 ...
- android开发使用jxl创建Excel
这周水了几天,今天把博客赶上,找找状态. 周五的时候终于完成了课堂测试第二阶段,主要的难点就是生成Excel表并将填写的数据插入到Excel表中. 一.jxl使用 1.创建或读取一个工作薄 Workb ...
- MySql分区、分表和分库
MySql分区.分表和分库 数据库的数据量达到一定程度之后,为避免带来系统性能上的瓶颈.需要进行数据的处理,采用的手段是分区.分片.分库.分表. 一些问题的解释: 1.为什么要分表和分区? 日常开发中 ...
- CentOS7安装Docker遇到的问题笔记
笔记/朱季谦 以下是笔者本人学习搭建docker过程当中记录的一些实践笔记,过程当中也遇到了一些坑,但都解决了,就此记录,留作以后再次搭建时可以直接参考. 一.首先,先检查CentOS版本,保证在Ce ...
- Python调用函数带括号和不带括号的区别
1.不带括号时,调用的是这个函数本身 ,是整个函数体,是一个函数对象,不需等该函数执行完成 2.带括号(此时必须传入需要的参数),调用的是函数的return结果,需要等待函数执行完成的结果 如果函数本 ...
- Selenium多浏览器并行测试
如果需要同时在IE.firefox.chrome进行测试,可以使用grid. Selenium Grid是一个智能代理服务器,允许Selenium测试将命令路由到远程Web浏览器实例.其目的是提供一种 ...
- JPA自动生成表
一句话总结: 在配置文件中 jpa-hibernate-ddl-auto:update validate 加载 Hibernate 时,验证创建数据库表结构 create 每次加载 Hibernate ...
- 分组密码(四)AES算法① — 密码学复习(七)
介绍完S-PN型结构之后,下面介绍AES算法.由于内容比较多所以将其分为两篇来介绍,本篇主要讲AES的历史时间节点.产生背景.与DES的对比.算法框图(粗略)以及一些数学基础. 7.1 AES的历史时 ...
- SQL Server 命令备忘录(持续更新...)
1.删除表内容并重置ID truncate table 表名 2.开启SqlDependency监控数据库 在数据中执行以下查询: SELECT is_broker_enabled FROM sys. ...
- Vue使用axios post方法发送json数据报415Unsupported Media Type
1.Vue使用axios post方法发送json数据 <template> <el-aside> <el-form ref="form" :mode ...