[特征工程] encoding
参考:An Overview of Encoding Techniques | Kaggle
Method 1: Label encoding
给每个类别以一个数字label,作为分类。将类别映射到自然数数值空间上
from sklearn.preprocessing import LabelEncoder
train=pd.DataFrame()
label=LabelEncoder()
for c in X.columns:
if(X[c].dtype=='object'):
train[c]=label.fit_transform(X[c])
else:
train[c]=X[c]
Method 2 : One hot encoding
即独热码,每一个category对应特征向量中的一位,对应位置是否为1判定是否为该类。
可以使用pd.get_dummies()或sklearn.preprocessing中OneHotEncoder
from sklearn.preprocessing import OneHotEncoder
one=OneHotEncoder(
one.fit(X)
train=one.transform(X)
Method 3 : Feature Hashing/Hashing Trick
一个“one hot encoding style” 的编码方式,将数据编入特定维数的散度矩阵中,降维中使用了hash方法。
from sklearn.feature_extraction import FeatureHasher
X_train_hash=X.copy()
for c in X.columns:
X_train_hash[c]=X[c].astype('str')
hashing=FeatureHasher(input_type='string')
train=hashing.transform(X_train_hash.values)
Method 4 :Encoding categories with dataset statistics
尝试为模型提供较低维的每个类别的表示,且其中类似的类别的表示相近。 最简单的方法是将每个类别替换为我们在数据集中看到它的次数,即用出现频率作为他们的embedding。
X_train_stat=X.copy()
for c in X_train_stat.columns:
if(X_train_stat[c].dtype=='object'):
X_train_stat[c]=X_train_stat[c].astype('category')
counts=X_train_stat[c].value_counts()
counts=counts.sort_index()
counts=counts.fillna(0)
counts += np.random.rand(len(counts))/1000
X_train_stat[c].cat.categories=counts
对于循环出现的特征,例如日期,星期等,常用sin\cos将其转为二维空间中的数据。这是基于“循环”的性质,类似于对圆进行分割。
X_train_cyclic=X.copy()
columns=['day','month']
for col in columns:
X_train_cyclic[col+'_sin']=np.sin((2*np.pi*X_train_cyclic[col])/max(X_train_cyclic[col]))
X_train_cyclic[col+'_cos']=np.cos((2*np.pi*X_train_cyclic[col])/max(X_train_cyclic[col]))
X_train_cyclic=X_train_cyclic.drop(columns,axis=1)
one=OneHotEncoder()
one.fit(X_train_cyclic)
train=one.transform(X_train_cyclic)
Method 5 : Target encoding
Target encoding 通过目标数据对类别变量进行编码,使用目标对应概率或平均概率替换该类别,即出现频次相近的被视为同一类(大城市,热门项等)。这个方法比较依赖训练集与测试集合的分布,要求他们数据分布一致。另外,这种方法可能会导致过拟合。
X_target=df_train.copy()
X_target['day']=X_target['day'].astype('object')
X_target['month']=X_target['month'].astype('object')
for col in X_target.columns:
if (X_target[col].dtype=='object'):
target= dict ( X_target.groupby(col)['target'].agg('sum')/X_target.groupby(col)['target'].agg('count'))
X_target[col]=X_target[col].replace(target).values
为了减轻过拟合可能带来的影响,可以使用K-Fold Validation ,每次对一份样本进行目标编码时,使用的都是其他K-1份数据之中的数据。
X['target']=y
cols=X.drop(['target','id'],axis=1).columns
%%time
X_fold=X.copy()
X_fold[['ord_0','day','month']]=X_fold[['ord_0','day','month']].astype('object')
X_fold[['bin_3','bin_4']]=X_fold[['bin_3','bin_4']].replace({'Y':1,'N':0,'T':1,"F":0})
kf = KFold(n_splits = 5, shuffle = False, random_state=2019)
for train_ind,val_ind in kf.split(X):
for col in cols:
if(X_fold[col].dtype=='object'):
replaced=dict(X.iloc[train_ind][[col,'target']].groupby(col)['target'].mean())
X_fold.loc[val_ind,col]=X_fold.iloc[val_ind][col].replace(replaced).values
此外,在对特征进行编码前也需要进行特征种类的区分。常分为:
- 0-1数值:只有两种取值,可映射到0,1
- 类别数值:多个类别,这也是最常见的数据。
- 时序数据:时间戳等,隐含了顺序信息,可以反应趋势。
[特征工程] encoding的更多相关文章
- 机器学习-特征工程-Missing value和Category encoding
好了,大家现在进入到机器学习中的一块核心部分了,那就是特征工程,洋文叫做Feature Engineering.实际在机器学习的应用中,真正用于算法的结构分析和部署的工作只占很少的一部分,相反,用于特 ...
- 特征工程(Feature Engineering)
一.什么是特征工程? "Feature engineering is the process of transforming raw data into features that bett ...
- 机器学习-特征工程-Feature generation 和 Feature selection
概述:上节咱们说了特征工程是机器学习的一个核心内容.然后咱们已经学习了特征工程中的基础内容,分别是missing value handling和categorical data encoding的一些 ...
- 【Python数据挖掘】第六篇--特征工程
一.Standardization 方法一:StandardScaler from sklearn.preprocessing import StandardScaler sds = Standard ...
- AI学习笔记:特征工程
一.概述 Andrew Ng:Coming up with features is difficult, time-consuming, requires expert knowledge. &quo ...
- Alink漫谈(十) :特征工程 之 特征哈希/标准化缩放
Alink漫谈(十) :特征工程之特征哈希/标准化缩放 目录 Alink漫谈(十) :特征工程之特征哈希/标准化缩放 0x00 摘要 0x01 相关概念 1.1 特征工程 1.2 特征缩放(Scali ...
- 使用sklearn做单机特征工程
目录 1 特征工程是什么?2 数据预处理 2.1 无量纲化 2.1.1 标准化 2.1.2 区间缩放法 2.1.3 标准化与归一化的区别 2.2 对定量特征二值化 2.3 对定性特征哑编码 2.4 缺 ...
- 特征工程(Feature Enginnering)学习记要
最近学习特征工程(Feature Enginnering)的相关技术,主要包含两块:特征选取(Feature Selection)和特征抓取(Feature Extraction).这里记录一些要点 ...
- 【转】使用sklearn做单机特征工程
这里是原文 说明:这是我用Markdown编辑的第一篇随笔 目录 1 特征工程是什么? 2 数据预处理 2.1 无量纲化 2.1.1 标准化 2.1.2 区间缩放法 2.1.3 无量纲化与正则化的区别 ...
随机推荐
- C语言通过指针数组和二维数组读取文件
1 # include <stdio.h> 2 # include <stdlib.h> 3 # include <time.h> 4 # include < ...
- 网站每日UV数据指标去重统计
package com.iexecloud.cloud.casemanager;import redis.clients.jedis.Jedis;import java.text.SimpleDate ...
- vue闪现问题,出现{{xxx}}解决方法
- Java ArrayList小记
1.基本用法 ArrayList是一个泛型容器,新建ArrayList需要实例化泛型参数,比如: ArrayList<String> StrList = new ArrayList< ...
- [USACO07NOV]Cow Relays G
题目大意 给出一张无向连通图(点数小于1000),求S到E经过k条边的最短路. 算法 这是之前国庆模拟赛的题 因为懒 所以就只挑一些题写博客 在考场上写了个dp 然后水到了50分 出考场和神仙们一问才 ...
- CF1540B Tree Array
先写一下自己想到的部分: 考虑枚举一个根. 计算一个点对出现的概率. 对于我这种期望概率基本不会的人,差点就把这题切了. 自己想到的部分都没有假. 问题在于: 如何计算一个点对出现的概率. 考虑和这两 ...
- JAVA写入TXT
用java生成txt文件有两种方式: 1)是通过字符流(或字节流): 2)是直接调用PrintWriter类. 具体实现过程如下: 1)字符流(字节流) 代码如下: import java.io.Fi ...
- JuiceFS 数据读写流程详解
对于文件系统而言,其读写的效率对整体的系统性能有决定性的影响,本文我们将通过介绍 JuiceFS 的读写请求处理流程,让大家对 JuiceFS 的特性有更进一步的了解. 写入流程 JuiceFS 对大 ...
- js获取中国省市区,省市筛选、省市、省市筛选联动。【C#】【js】
<style type="text/css"> .labelhide { -webkit-box-shadow: 0px 1px 0px 0px #f3f3f3 !im ...
- 在Idea上用JDBC连接mysql数据库
一.前言 本次操作建立在idea中java环境已配置的基础上 二.操作步骤 1.建立Web项目后,添加驱动包 mysql-connector-java-5.0.8-bin.jar (1)下载mysql ...