组合 FZU-2020

题目描述

给出组合数C(n,m), 表示从n个元素中选出m个元素的方案数。例如C(5,2) = 10, C(4,2) = 6.可是当n,m比较大的时候,C(n,m)很大!于是xiaobo希望你输出 C(n,m) mod p的值!

分析

Lucas定理:

如果我们要求C(n,m)%p的值,那么

进行推导可以得到

这一道题使用Lucas定理的递归式

\[C^n_m \ mod \ p= C^{n\ mod \ p}_{m\ mod \ p}\times C^{n\div p}_{m\div p} \ mod \ p
\]

Lucas递归边界,\(m=0\) 那么值就是1,其余部分递归处理,

剩下的$ C(n%mod,m%mod) $就可以使用费马小定理或者扩展欧几里得来求出逆元算一下答案就可以了。

AC代码

#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
#include <cctype>
#include <cmath>
#include <time.h>
#include <map>
#include <set>
#include <vector>
using namespace std;
#define ms(a,b) memset(a,b,sizeof(a))
typedef long long ll;
ll n,m,p;
inline int read(){
int X=0,w=0; char ch=0;
while(!isdigit(ch)) {w|=ch=='-';ch=getchar();}
while(isdigit(ch)) X=(X<<3)+(X<<1)+(ch^48),ch=getchar();
return w?-X:X;
}
ll power(ll a,ll b) {
ll res=1;
while(b>0) {
if (b&1) res=res*a%p;
b=b>>1;
a=a*a%p;
}
return res;
}
ll C(ll n,ll m) {
if (m>n) return 0;
ll ans=1;
for (int i=1;i<=m;i++) {
ll a=(n+i-m)%p;
ll b=i%p;
ans=ans*(a*power(b,p-2)%p)%p;
}
return ans;
}
ll lucas(ll n,ll m) {
if (m==0) return 1;
return C(n%p,m%p)*lucas(n/p,m/p)%p;
}
int main(){
int cas=read();
while (cas--) {
scanf("%lld%lld%lld",&n,&m,&p);
printf("%lld\n",lucas(n,m));
}
return 0;
}

【Lucas组合数定理】组合-FZU 2020的更多相关文章

  1. 【Lucas组合数定理+中国剩余定理】Mysterious For-HDU 4373

    Mysterious For-HDU 4373 题目描述 MatRush is an ACMer from ZJUT, and he always love to create some specia ...

  2. BZOJ_2142_礼物_扩展lucas+组合数取模+CRT

    BZOJ_2142_礼物_扩展lucas+组合数取模 Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同 ...

  3. FZU 2020 组合 (Lucas定理)

    题意:中文题. 析:直接运用Lucas定理即可.但是FZU好奇怪啊,我开个常数都CE,弄的工CE了十几次,在vj上还不显示. 代码如下: #pragma comment(linker, "/ ...

  4. FZU 2020 :组合 【lucas】

    Problem Description 给出组合数C(n,m), 表示从n个元素中选出m个元素的方案数.例如C(5,2) = 10, C(4,2) = 6.可是当n,m比较大的时候,C(n,m)很大! ...

  5. [bzoj4591][Shoi2015][超能粒子炮·改] (lucas定理+组合计数)

    Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...

  6. FZU 2020 组合

    组合数求模要用逆元,用到了扩展的欧几里得算法. #include<cstdio> int mod; typedef long long LL; void gcd(LL a,LL b,LL ...

  7. CRT中国剩余定理 & Lucas卢卡斯定理

    数论_CRT(中国剩余定理)& Lucas (卢卡斯定理) 前言 又是一脸懵逼的一天. 正文 按照道理来说,我们应该先做一个介绍. 中国剩余定理 中国剩余定理,Chinese Remainde ...

  8. A Simple Chess (Lucas组合数 + 容斥)

    题意:走马步,要求向右向下,不能走进禁止的点.求方案数. 思路:若是n*m比较小的话,那么可以直接DP.但是这道题目不行.不过我们仔细分析可以知道从某个点到某个点是一个组合数,但是数据太大,mod值很 ...

  9. Lucas(卢卡斯)定理模板&&例题解析([SHOI2015]超能粒子炮·改)

    Lucas定理 先上结论: 当p为素数: \(\binom{ N }{M} \equiv \binom{ N/p }{M/p}*\binom{ N mod p }{M mod p} (mod p)\) ...

随机推荐

  1. Java期末考试编程题复习

    在程序中定义Person类,为该类编写如下字段.构造器.访问器.修改器和相应的其他方法.(20分) <1>在Person类中定义两个字段: 私有访问权限,类型为String的name字段: ...

  2. 「模拟8.13」任(liu_runda的神题,性质分析)

    考场时没有发现性质,用了个前缀和优化暴力,结果写WA了 我们发现其实联通块的个数就是点的个数-边的个数 然后我们需要维护横向上和纵向上的边的前缀和 前缀和的查询形式稍改一下 暴力 1 #include ...

  3. Reactive Spring实战 -- 响应式Kafka交互

    本文分享如何使用KRaft部署Kafka集群,以及Spring中如何实现Kafka响应式交互. KRaft 我们知道,Kafka使用Zookeeper负责为kafka存储broker,Consumer ...

  4. Java-学习日记(Atomic,Volatile)

    很早之前在公司就看到了atomicInteger,atomicLong这些变量了,一直不明白是什么意思,今天花了点时间了解下. volatile: 先从volatile开始讲起,volatile是多线 ...

  5. 百炼3752:走迷宫--栈实现dfs

    3752:走迷宫 总时间限制:  1000ms 内存限制:  65536kB 描述 一个迷宫由R行C列格子组成,有的格子里有障碍物,不能走:有的格子是空地,可以走.给定一个迷宫,求从左上角走到右下角最 ...

  6. Java基础-封装和继承

    @ 目录 Java基础知识(封装和继承) 一. 封装 1.1 封装的目的 1.2 封装的好处 1.3 封装的步骤 1.4 封装的例子 1.5 小结 二. 继承 2.1 继承的介绍 2.2 生活中的继承 ...

  7. Java并发之Semaphore源码解析(一)

    Semaphore 前情提要:在学习本章前,需要先了解笔者先前讲解过的ReentrantLock源码解析,ReentrantLock源码解析里介绍的方法有很多是本章的铺垫.下面,我们进入本章正题Sem ...

  8. WebGPU性能测试分析

    大家好,本文对WebGPU进行性能测试和分析,目的是为了对比WebGL和WebGPU在"渲染"和"计算"两个维度的性能差异,具体表现为CPU性能和FPS性能两个 ...

  9. 收集雪花(map)

    题目描述 不同的雪花往往有不同的形状.在北方的同学想将雪花收集起来,作为礼物送给在南方的同学们.一共有n个时刻,给出每个时刻下落雪花的形状,用不同的整数表示不同的形状.在收集的过程中,同学们不希望有重 ...

  10. 腾讯互动白板+即时通讯+实时音视频,Android学生端接入

    腾讯互动白板+即时通讯+实时音视频,Android学生端接入 一.简介 线上教学方案:腾讯云互动白板(Tencent Interactive Whiteboard,TIW)+即时通信(Instant ...