以两种异步模型应用案例,深度解析Future接口
摘要:本文以实际案例的形式分析了两种异步模型,并从源码角度深度解析Future接口和FutureTask类。
本文分享自华为云社区《【精通高并发系列】两种异步模型与深度解析Future接口(一)!》,作者:冰 河 。
本文以实际案例的形式分析了两种异步模型,并从源码角度深度解析Future接口和FutureTask类,希望大家踏下心来,打开你的IDE,跟着文章看源码,相信你一定收获不小!
一、两种异步模型
在Java的并发编程中,大体上会分为两种异步编程模型,一类是直接以异步的形式来并行运行其他的任务,不需要返回任务的结果数据。一类是以异步的形式运行其他任务,需要返回结果。
1.无返回结果的异步模型
无返回结果的异步任务,可以直接将任务丢进线程或线程池中运行,此时,无法直接获得任务的执行结果数据,一种方式是可以使用回调方法来获取任务的运行结果。
具体的方案是:定义一个回调接口,并在接口中定义接收任务结果数据的方法,具体逻辑在回调接口的实现类中完成。将回调接口与任务参数一同放进线程或线程池中运行,任务运行后调用接口方法,执行回调接口实现类中的逻辑来处理结果数据。这里,给出一个简单的示例供参考。
- 定义回调接口
package io.binghe.concurrent.lab04; /**
* @author binghe
* @version 1.0.0
* @description 定义回调接口
*/
public interface TaskCallable<T> {
T callable(T t);
}
便于接口的通用型,这里为回调接口定义了泛型。
- 定义任务结果数据的封装类
package io.binghe.concurrent.lab04; import java.io.Serializable; /**
* @author binghe
* @version 1.0.0
* @description 任务执行结果
*/
public class TaskResult implements Serializable {
private static final long serialVersionUID = 8678277072402730062L;
/**
* 任务状态
*/
private Integer taskStatus; /**
* 任务消息
*/
private String taskMessage; /**
* 任务结果数据
*/
private String taskResult; //省略getter和setter方法
@Override
public String toString() {
return "TaskResult{" +
"taskStatus=" + taskStatus +
", taskMessage='" + taskMessage + '\'' +
", taskResult='" + taskResult + '\'' +
'}';
}
}
- 创建回调接口的实现类
回调接口的实现类主要用来对任务的返回结果进行相应的业务处理,这里,为了方便演示,只是将结果数据返回。大家需要根据具体的业务场景来做相应的分析和处理。
package io.binghe.concurrent.lab04; /**
* @author binghe
* @version 1.0.0
* @description 回调函数的实现类
*/
public class TaskHandler implements TaskCallable<TaskResult> {
@Override
public TaskResult callable(TaskResult taskResult) {
//TODO 拿到结果数据后进一步处理
System.out.println(taskResult.toString());
return taskResult;
}
}
- 创建任务的执行类
任务的执行类是具体执行任务的类,实现Runnable接口,在此类中定义一个回调接口类型的成员变量和一个String类型的任务参数(模拟任务的参数),并在构造方法中注入回调接口和任务参数。在run方法中执行任务,任务完成后将任务的结果数据封装成TaskResult对象,调用回调接口的方法将TaskResult对象传递到回调方法中。
package io.binghe.concurrent.lab04; /**
* @author binghe
* @version 1.0.0
* @description 任务执行类
*/
public class TaskExecutor implements Runnable{
private TaskCallable<TaskResult> taskCallable;
private String taskParameter; public TaskExecutor(TaskCallable<TaskResult> taskCallable, String taskParameter){
this.taskCallable = taskCallable;
this.taskParameter = taskParameter;
} @Override
public void run() {
//TODO 一系列业务逻辑,将结果数据封装成TaskResult对象并返回
TaskResult result = new TaskResult();
result.setTaskStatus(1);
result.setTaskMessage(this.taskParameter);
result.setTaskResult("异步回调成功");
taskCallable.callable(result);
}
}
到这里,整个大的框架算是完成了,接下来,就是测试看能否获取到异步任务的结果了。
- 异步任务测试类
package io.binghe.concurrent.lab04; /**
* @author binghe
* @version 1.0.0
* @description 测试回调
*/
public class TaskCallableTest {
public static void main(String[] args){
TaskCallable<TaskResult> taskCallable = new TaskHandler();
TaskExecutor taskExecutor = new TaskExecutor(taskCallable, "测试回调任务");
new Thread(taskExecutor).start();
}
}
在测试类中,使用Thread类创建一个新的线程,并启动线程运行任务。运行程序最终的接口数据如下所示。
TaskResult{taskStatus=1, taskMessage='测试回调任务', taskResult='异步回调成功'}
大家可以细细品味下这种获取异步结果的方式。这里,只是简单的使用了Thread类来创建并启动线程,也可以使用线程池的方式实现。大家可自行实现以线程池的方式通过回调接口获取异步结果。
2.有返回结果的异步模型
尽管使用回调接口能够获取异步任务的结果,但是这种方式使用起来略显复杂。在JDK中提供了可以直接返回异步结果的处理方案。最常用的就是使用Future接口或者其实现类FutureTask来接收任务的返回结果。
- 使用Future接口获取异步结果
使用Future接口往往配合线程池来获取异步执行结果,如下所示。
package io.binghe.concurrent.lab04; import java.util.concurrent.*; /**
* @author binghe
* @version 1.0.0
* @description 测试Future获取异步结果
*/
public class FutureTest { public static void main(String[] args) throws ExecutionException, InterruptedException {
ExecutorService executorService = Executors.newSingleThreadExecutor();
Future<String> future = executorService.submit(new Callable<String>() {
@Override
public String call() throws Exception {
return "测试Future获取异步结果";
}
});
System.out.println(future.get());
executorService.shutdown();
}
}
运行结果如下所示。
测试Future获取异步结果
- 使用FutureTask类获取异步结果
FutureTask类既可以结合Thread类使用也可以结合线程池使用,接下来,就看下这两种使用方式。
结合Thread类的使用示例如下所示。
package io.binghe.concurrent.lab04; import java.util.concurrent.*; /**
* @author binghe
* @version 1.0.0
* @description 测试FutureTask获取异步结果
*/
public class FutureTaskTest { public static void main(String[] args)throws ExecutionException, InterruptedException{
FutureTask<String> futureTask = new FutureTask<>(new Callable<String>() {
@Override
public String call() throws Exception {
return "测试FutureTask获取异步结果";
}
});
new Thread(futureTask).start();
System.out.println(futureTask.get());
}
}
运行结果如下所示。
测试FutureTask获取异步结果
结合线程池的使用示例如下。
package io.binghe.concurrent.lab04; import java.util.concurrent.*; /**
* @author binghe
* @version 1.0.0
* @description 测试FutureTask获取异步结果
*/
public class FutureTaskTest { public static void main(String[] args) throws ExecutionException, InterruptedException {
ExecutorService executorService = Executors.newSingleThreadExecutor();
FutureTask<String> futureTask = new FutureTask<>(new Callable<String>() {
@Override
public String call() throws Exception {
return "测试FutureTask获取异步结果";
}
});
executorService.execute(futureTask);
System.out.println(futureTask.get());
executorService.shutdown();
}
}
运行结果如下所示。
测试FutureTask获取异步结果
可以看到使用Future接口或者FutureTask类来获取异步结果比使用回调接口获取异步结果简单多了。注意:实现异步的方式很多,这里只是用多线程举例。
二、深度解析Future接口
1.Future接口
Future是JDK1.5新增的异步编程接口,其源代码如下所示。
package java.util.concurrent; public interface Future<V> { boolean cancel(boolean mayInterruptIfRunning); boolean isCancelled(); boolean isDone(); V get() throws InterruptedException, ExecutionException; V get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException;
}
可以看到,在Future接口中,总共定义了5个抽象方法。接下来,就分别介绍下这5个方法的含义。
- cancel(boolean)
取消任务的执行,接收一个boolean类型的参数,成功取消任务,则返回true,否则返回false。当任务已经完成,已经结束或者因其他原因不能取消时,方法会返回false,表示任务取消失败。当任务未启动调用了此方法,并且结果返回true(取消成功),则当前任务不再运行。如果任务已经启动,会根据当前传递的boolean类型的参数来决定是否中断当前运行的线程来取消当前运行的任务。
- isCancelled()
判断任务在完成之前是否被取消,如果在任务完成之前被取消,则返回true;否则,返回false。
这里需要注意一个细节:只有任务未启动,或者在完成之前被取消,才会返回true,表示任务已经被成功取消。其他情况都会返回false。
- isDone()
判断任务是否已经完成,如果任务正常结束、抛出异常退出、被取消,都会返回true,表示任务已经完成。
- get()
当任务完成时,直接返回任务的结果数据;当任务未完成时,等待任务完成并返回任务的结果数据。
- get(long, TimeUnit)
当任务完成时,直接返回任务的结果数据;当任务未完成时,等待任务完成,并设置了超时等待时间。在超时时间内任务完成,则返回结果;否则,抛出TimeoutException异常。
2.RunnableFuture接口
Future接口有一个重要的子接口,那就是RunnableFuture接口,RunnableFuture接口不但继承了Future接口,而且继承了java.lang.Runnable接口,其源代码如下所示。
package java.util.concurrent; public interface RunnableFuture<V> extends Runnable, Future<V> {
void run();
}
这里,问一下,RunnableFuture接口中有几个抽象方法?想好了再说!哈哈哈。。。
这个接口比较简单run()方法就是运行任务时调用的方法。
3.FutureTask类
FutureTask类是RunnableFuture接口的一个非常重要的实现类,它实现了RunnableFuture接口、Future接口和Runnable接口的所有方法。FutureTask类的源代码比较多,这个就不粘贴了,大家自行到java.util.concurrent下查看。
(1)FutureTask类中的变量与常量
在FutureTask类中首先定义了一个状态变量state,这个变量使用了volatile关键字修饰,这里,大家只需要知道volatile关键字通过内存屏障和禁止重排序优化来实现线程安全,后续会单独深度分析volatile关键字是如何保证线程安全的。紧接着,定义了几个任务运行时的状态常量,如下所示。
private volatile int state;
private static final int NEW = 0;
private static final int COMPLETING = 1;
private static final int NORMAL = 2;
private static final int EXCEPTIONAL = 3;
private static final int CANCELLED = 4;
private static final int INTERRUPTING = 5;
private static final int INTERRUPTED = 6;
其中,代码注释中给出了几个可能的状态变更流程,如下所示。
NEW -> COMPLETING -> NORMAL
NEW -> COMPLETING -> EXCEPTIONAL
NEW -> CANCELLED
NEW -> INTERRUPTING -> INTERRUPTED
接下来,定义了其他几个成员变量,如下所示。
private Callable<V> callable;
private Object outcome;
private volatile Thread runner;
private volatile WaitNode waiters;
又看到我们所熟悉的Callable接口了,Callable接口那肯定就是用来调用call()方法执行具体任务了。
- outcome:Object类型,表示通过get()方法获取到的结果数据或者异常信息。
- runner:运行Callable的线程,运行期间会使用CAS保证线程安全,这里大家只需要知道CAS是Java保证线程安全的一种方式,后续文章中会深度分析CAS如何保证线程安全。
- waiters:WaitNode类型的变量,表示等待线程的堆栈,在FutureTask的实现中,会通过CAS结合此堆栈交换任务的运行状态。
看一下WaitNode类的定义,如下所示。
static final class WaitNode {
volatile Thread thread;
volatile WaitNode next;
WaitNode() { thread = Thread.currentThread(); }
}
可以看到,WaitNode类是FutureTask类的静态内部类,类中定义了一个Thread成员变量和指向下一个WaitNode节点的引用。其中通过构造方法将thread变量设置为当前线程。
(2)构造方法
接下来,是FutureTask的两个构造方法,比较简单,如下所示。
public FutureTask(Callable<V> callable) {
if (callable == null)
throw new NullPointerException();
this.callable = callable;
this.state = NEW;
} public FutureTask(Runnable runnable, V result) {
this.callable = Executors.callable(runnable, result);
this.state = NEW;
}
(3)是否取消与完成方法
继续向下看源码,看到一个任务是否取消的方法,和一个任务是否完成的方法,如下所示。
public boolean isCancelled() {
return state >= CANCELLED;
} public boolean isDone() {
return state != NEW;
}
这两方法中,都是通过判断任务的状态来判定任务是否已取消和已完成的。为啥会这样判断呢?再次查看FutureTask类中定义的状态常量发现,其常量的定义是有规律的,并不是随意定义的。其中,大于或者等于CANCELLED的常量为CANCELLED、INTERRUPTING和INTERRUPTED,这三个状态均可以表示线程已经被取消。当状态不等于NEW时,可以表示任务已经完成。
通过这里,大家可以学到一点:以后在编码过程中,要按照规律来定义自己使用的状态,尤其是涉及到业务中有频繁的状态变更的操作,有规律的状态可使业务处理变得事半功倍,这也是通过看别人的源码设计能够学到的,这里,建议大家还是多看别人写的优秀的开源框架的源码。
(4)取消方法
我们继续向下看源码,接下来,看到的是cancel(boolean)方法,如下所示。
public boolean cancel(boolean mayInterruptIfRunning) {
if (!(state == NEW &&
UNSAFE.compareAndSwapInt(this, stateOffset, NEW,
mayInterruptIfRunning ? INTERRUPTING : CANCELLED)))
return false;
try { // in case call to interrupt throws exception
if (mayInterruptIfRunning) {
try {
Thread t = runner;
if (t != null)
t.interrupt();
} finally { // final state
UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED);
}
}
} finally {
finishCompletion();
}
return true;
}
接下来,拆解cancel(boolean)方法。在cancel(boolean)方法中,首先判断任务的状态和CAS的操作结果,如果任务的状态不等于NEW或者CAS的操作返回false,则直接返回false,表示任务取消失败。如下所示。
if (!(state == NEW &&
UNSAFE.compareAndSwapInt(this, stateOffset, NEW,
mayInterruptIfRunning ? INTERRUPTING : CANCELLED)))
return false;
接下来,在try代码块中,首先判断是否可以中断当前任务所在的线程来取消任务的运行。如果可以中断当前任务所在的线程,则以一个Thread临时变量来指向运行任务的线程,当指向的变量不为空时,调用线程对象的interrupt()方法来中断线程的运行,最后将线程标记为被中断的状态。如下所示。
try {
if (mayInterruptIfRunning) {
try {
Thread t = runner;
if (t != null)
t.interrupt();
} finally { // final state
UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED);
}
}
}
这里,发现变更任务状态使用的是UNSAFE.putOrderedInt()方法,这个方法是个什么鬼呢?点进去看一下,如下所示。
public native void putOrderedInt(Object var1, long var2, int var4);
可以看到,又是一个本地方法,嘿嘿,这里先不管它,后续文章会详解这些方法的作用。
接下来,cancel(boolean)方法会进入finally代码块,如下所示。
finally {
finishCompletion();
}
可以看到在finallly代码块中调用了finishCompletion()方法,顾名思义,finishCompletion()方法表示结束任务的运行,接下来看看它是如何实现的。点到finishCompletion()方法中看一下,如下所示。
private void finishCompletion() {
// assert state > COMPLETING;
for (WaitNode q; (q = waiters) != null;) {
if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
for (;;) {
Thread t = q.thread;
if (t != null) {
q.thread = null;
LockSupport.unpark(t);
}
WaitNode next = q.next;
if (next == null)
break;
q.next = null; // unlink to help gc
q = next;
}
break;
}
}
done();
callable = null; // to reduce footprint
}
在finishCompletion()方法中,首先定义一个for循环,循环终止因子为waiters为null,在循环中,判断CAS操作是否成功,如果成功进行if条件中的逻辑。首先,定义一个for自旋循环,在自旋循环体中,唤醒WaitNode堆栈中的线程,使其运行完成。当WaitNode堆栈中的线程运行完成后,通过break退出外层for循环。接下来调用done()方法。done()方法又是个什么鬼呢?点进去看一下,如下所示。
protected void done() { }
可以看到,done()方法是一个空的方法体,交由子类来实现具体的业务逻辑。
当我们的具体业务中,需要在取消任务时,执行一些额外的业务逻辑,可以在子类中覆写done()方法的实现。
(5)get()方法
继续向下看FutureTask类的代码,FutureTask类中实现了两个get()方法,如下所示。
public V get() throws InterruptedException, ExecutionException {
int s = state;
if (s <= COMPLETING)
s = awaitDone(false, 0L);
return report(s);
} public V get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException {
if (unit == null)
throw new NullPointerException();
int s = state;
if (s <= COMPLETING &&
(s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING)
throw new TimeoutException();
return report(s);
}
没参数的get()方法为当任务未运行完成时,会阻塞,直到返回任务结果。有参数的get()方法为当任务未运行完成,并且等待时间超出了超时时间,会TimeoutException异常。
两个get()方法的主要逻辑差不多,一个没有超时设置,一个有超时设置,这里说一下主要逻辑。判断任务的当前状态是否小于或者等于COMPLETING,也就是说,任务是NEW状态或者COMPLETING,调用awaitDone()方法,看下awaitDone()方法的实现,如下所示。
private int awaitDone(boolean timed, long nanos)
throws InterruptedException {
final long deadline = timed ? System.nanoTime() + nanos : 0L;
WaitNode q = null;
boolean queued = false;
for (;;) {
if (Thread.interrupted()) {
removeWaiter(q);
throw new InterruptedException();
} int s = state;
if (s > COMPLETING) {
if (q != null)
q.thread = null;
return s;
}
else if (s == COMPLETING) // cannot time out yet
Thread.yield();
else if (q == null)
q = new WaitNode();
else if (!queued)
queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
q.next = waiters, q);
else if (timed) {
nanos = deadline - System.nanoTime();
if (nanos <= 0L) {
removeWaiter(q);
return state;
}
LockSupport.parkNanos(this, nanos);
}
else
LockSupport.park(this);
}
}
接下来,拆解awaitDone()方法。在awaitDone()方法中,最重要的就是for自旋循环,在循环中首先判断当前线程是否被中断,如果已经被中断,则调用removeWaiter()将当前线程从堆栈中移除,并且抛出InterruptedException异常,如下所示。
if (Thread.interrupted()) {
removeWaiter(q);
throw new InterruptedException();
}
接下来,判断任务的当前状态是否完成,如果完成,并且堆栈句柄不为空,则将堆栈中的当前线程设置为空,返回当前任务的状态,如下所示。
int s = state;
if (s > COMPLETING) {
if (q != null)
q.thread = null;
return s;
}
当任务的状态为COMPLETING时,使当前线程让出CPU资源,如下所示。
else if (s == COMPLETING)
Thread.yield();
如果堆栈为空,则创建堆栈对象,如下所示。
else if (q == null)
q = new WaitNode();
如果queued变量为false,通过CAS操作为queued赋值,如果awaitDone()方法传递的timed参数为true,则计算超时时间,当时间已超时,则在堆栈中移除当前线程并返回任务状态,如下所示。如果未超时,则重置超时时间,如下所示。
else if (!queued)
queued = UNSAFE.compareAndSwapObject(this, waitersOffset, q.next = waiters, q);
else if (timed) {
nanos = deadline - System.nanoTime();
if (nanos <= 0L) {
removeWaiter(q);
return state;
}
LockSupport.parkNanos(this, nanos);
}
如果不满足上述的所有条件,则将当前线程设置为等待状态,如下所示。
else
LockSupport.park(this);
接下来,回到get()方法中,当awaitDone()方法返回结果,或者任务的状态不满足条件时,都会调用report()方法,并将当前任务的状态传递到report()方法中,并返回结果,如下所示。
return report(s);
看来,这里还要看下report()方法啊,点进去看下report()方法的实现,如下所示。
private V report(int s) throws ExecutionException {
Object x = outcome;
if (s == NORMAL)
return (V)x;
if (s >= CANCELLED)
throw new CancellationException();
throw new ExecutionException((Throwable)x);
}
可以看到,report()方法的实现比较简单,首先,将outcome数据赋值给x变量,接下来,主要是判断接收到的任务状态,如果状态为NORMAL,则将x强转为泛型类型返回;当任务的状态大于或者等于CANCELLED,也就是任务已经取消,则抛出CancellationException异常,其他情况则抛出ExecutionException异常。
至此,get()方法分析完成。注意:一定要理解get()方法的实现,因为get()方法是我们使用Future接口和FutureTask类时,使用的比较频繁的一个方法。
(6)set()方法与setException()方法
继续看FutureTask类的代码,接下来看到的是set()方法与setException()方法,如下所示。
protected void set(V v) {
if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
outcome = v;
UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
finishCompletion();
}
} protected void setException(Throwable t) {
if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
outcome = t;
UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state
finishCompletion();
}
}
通过源码可以看出,set()方法与setException()方法整体逻辑几乎一样,只是在设置任务状态时一个将状态设置为NORMAL,一个将状态设置为EXCEPTIONAL。
至于finishCompletion()方法,前面已经分析过。
(7)run()方法与runAndReset()方法
接下来,就是run()方法了,run()方法的源代码如下所示。
public void run() {
if (state != NEW ||
!UNSAFE.compareAndSwapObject(this, runnerOffset,
null, Thread.currentThread()))
return;
try {
Callable<V> c = callable;
if (c != null && state == NEW) {
V result;
boolean ran;
try {
result = c.call();
ran = true;
} catch (Throwable ex) {
result = null;
ran = false;
setException(ex);
}
if (ran)
set(result);
}
} finally {
// runner must be non-null until state is settled to
// prevent concurrent calls to run()
runner = null;
// state must be re-read after nulling runner to prevent
// leaked interrupts
int s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
}
可以这么说,只要使用了Future和FutureTask,就必然会调用run()方法来运行任务,掌握run()方法的流程是非常有必要的。在run()方法中,如果当前状态不是NEW,或者CAS操作返回的结果为false,则直接返回,不再执行后续逻辑,如下所示。
if (state != NEW ||
!UNSAFE.compareAndSwapObject(this, runnerOffset, null, Thread.currentThread()))
return;
接下来,在try代码块中,将成员变量callable赋值给一个临时变量c,判断临时变量不等于null,并且任务状态为NEW,则调用Callable接口的call()方法,并接收结果数据。并将ran变量设置为true。当程序抛出异常时,将接收结果的变量设置为null,ran变量设置为false,并且调用setException()方法将任务的状态设置为EXCEPTIONA。接下来,如果ran变量为true,则调用set()方法,如下所示。
try {
Callable<V> c = callable;
if (c != null && state == NEW) {
V result;
boolean ran;
try {
result = c.call();
ran = true;
} catch (Throwable ex) {
result = null;
ran = false;
setException(ex);
}
if (ran)
set(result);
}
}
接下来,程序会进入finally代码块中,如下所示。
finally {
// runner must be non-null until state is settled to
// prevent concurrent calls to run()
runner = null;
// state must be re-read after nulling runner to prevent
// leaked interrupts
int s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
这里,将runner设置为null,如果任务的当前状态大于或者等于INTERRUPTING,也就是线程被中断了。则调用handlePossibleCancellationInterrupt()方法,接下来,看下handlePossibleCancellationInterrupt()方法的实现。
private void handlePossibleCancellationInterrupt(int s) {
if (s == INTERRUPTING)
while (state == INTERRUPTING)
Thread.yield();
}
可以看到,handlePossibleCancellationInterrupt()方法的实现比较简单,当任务的状态为INTERRUPTING时,使用while()循环,条件为当前任务状态为INTERRUPTING,将当前线程占用的CPU资源释放,也就是说,当任务运行完成后,释放线程所占用的资源。
runAndReset()方法的逻辑与run()差不多,只是runAndReset()方法会在finally代码块中将任务状态重置为NEW。runAndReset()方法的源代码如下所示,就不重复说明了。
protected boolean runAndReset() {
if (state != NEW ||
!UNSAFE.compareAndSwapObject(this, runnerOffset, null, Thread.currentThread()))
return false;
boolean ran = false;
int s = state;
try {
Callable<V> c = callable;
if (c != null && s == NEW) {
try {
c.call(); // don't set result
ran = true;
} catch (Throwable ex) {
setException(ex);
}
}
} finally {
// runner must be non-null until state is settled to
// prevent concurrent calls to run()
runner = null;
// state must be re-read after nulling runner to prevent
// leaked interrupts
s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
return ran && s == NEW;
}
(8)removeWaiter()方法
removeWaiter()方法中主要是使用自旋循环的方式来移除WaitNode中的线程,比较简单,如下所示。
private void removeWaiter(WaitNode node) {
if (node != null) {
node.thread = null;
retry:
for (;;) { // restart on removeWaiter race
for (WaitNode pred = null, q = waiters, s; q != null; q = s) {
s = q.next;
if (q.thread != null)
pred = q;
else if (pred != null) {
pred.next = s;
if (pred.thread == null) // check for race
continue retry;
}
else if (!UNSAFE.compareAndSwapObject(this, waitersOffset,
q, s))
continue retry;
}
break;
}
}
}
最后,在FutureTask类的最后,有如下代码。
// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE;
private static final long stateOffset;
private static final long runnerOffset;
private static final long waitersOffset;
static {
try {
UNSAFE = sun.misc.Unsafe.getUnsafe();
Class<?> k = FutureTask.class;
stateOffset = UNSAFE.objectFieldOffset
(k.getDeclaredField("state"));
runnerOffset = UNSAFE.objectFieldOffset
(k.getDeclaredField("runner"));
waitersOffset = UNSAFE.objectFieldOffset
(k.getDeclaredField("waiters"));
} catch (Exception e) {
throw new Error(e);
}
}
关于这些代码的作用,会在后续深度解析CAS文章中详细说明,这里就不再探讨。
至此,关于Future接口和FutureTask类的源码就分析完了。
以两种异步模型应用案例,深度解析Future接口的更多相关文章
- 【高并发】两种异步模型与深度解析Future接口
大家好,我是冰河~~ 本文有点长,但是满满的干货,以实际案例的形式分析了两种异步模型,并从源码角度深度解析Future接口和FutureTask类,希望大家踏下心来,打开你的IDE,跟着文章看源码,相 ...
- css的两种盒子模型
css的两种盒子模型:W3C标准盒子模型.IE盒子模型 两者的相同之处:都包含margin.border.padding.content 两者的不同之处:W3C标准盒子模型的content部分不包含其 ...
- JMS两种消息模型
前段时间学习EJB.接触到了JMS(Java消息服务),JMS支持两种消息模型:Point-to-Point(P2P)和Publish/Subscribe(Pub/Sub),即点对点和公布订阅模型. ...
- axios 两种异步模式,代理模式 和 异步模式
axios 两种异步模式,代理模式 和 异步模式
- DIV+CSS两种盒子模型(W3C盒子与IE盒子)
在辨析两种盒子模型之前.先简单说明一下什么叫盒子模型. 原理: 先说说我们在网页设计中常听的属性名:内容(content).填充(padding).边框(border).边界(margin), CSS ...
- 两种Tensorflow模型保存的方法
在Tensorflow中,有两种保存模型的方法:一种是Checkpoint,另一种是Protobuf,也就是PB格式: 一. Checkpoint方法: 1.保存时使用方法: tf.train.Sav ...
- Java NIO学习与记录(八): Reactor两种多线程模型的实现
Reactor两种多线程模型的实现 注:本篇文章例子基于上一篇进行:Java NIO学习与记录(七): Reactor单线程模型的实现 紧接着上篇Reactor单线程模型的例子来,假设Handler的 ...
- DIV+CSS两种盒子模型
盒子模型有两种,分别是 IE 盒子模型和标准 W3C 盒子模型.他们对盒子模型的解释各不相同, 先来看看我们熟悉的标准盒子模型: 从上图可以看到标准 W3C 盒子模型的范围包括 margin.bord ...
- CSS的两种盒模型
盒模型一共有两种模式,一种是标准模式,另一种就是怪异模式. 当你用编辑器新建一个html页面的时候你一定会发现最顶上都会有一个DOCTYPE标签,例如: <!DOCTYPE HTML PUBLI ...
随机推荐
- Effective Fusion Factor in FPN for Tiny Object Detection
微小目标检测的FPN有效融合因子 摘要:基于FPN的检测器在一般物体检测方面取得了显著的进步,例如MS COCO和PASCAL VOC.然而,这些检测器在某些应用场景中会失败,例如微小物体检测.在本文 ...
- vs联合halcon——采集图像(实时采集与单次采集)
摘要 在对vs进行环境配置好以后,就可以开始与halcon联合进行实战.本篇就对图像的采集进行总结.通过构建采集相机GrabImage类的三个方法实现图像的采集: open() 打开相机 grabim ...
- 解决Git操作报错
情况一: 当我拉取的代码是最新的时候,git pull是可以正常的拉取的,但是却不可以提交,报错如下图: 情况二: 如果我目前不是最新的版本,需要git pull,此时拉取就会失败,报错如下图: 出现 ...
- 远程代码执行MS08-067漏洞复现失败过程
远程代码执行MS08-067漏洞复现失败过程 漏洞描述: 如果用户在受影响的系统上收到特制的 RPC 请求,则该漏洞可能允许远程执行代码. 在微软服务器系统上,攻击者可能未经身份验证即可利用此漏洞运行 ...
- 【luogu P3807】【模板】卢卡斯定理/Lucas 定理(含 Lucas 定理证明)
[模板]卢卡斯定理/Lucas 定理 题目链接:luogu P3807 题目大意 求 C(n,n+m)%p 的值. p 保证是质数. 思路 Lucas 定理内容 对于非负整数 \(n\),\(m\), ...
- AD设计中地铜突然消失且无法选中删除的解决办法
作者:struct_mooc 博客地址: https://www.cnblogs.com/structmooc/p/14984466.html 前几天在设计一块电路板的时候,已经全部设计完了!但是 ...
- Docker搭建Jenkins+Maven/Gradle——代码自动化运维部署平台(二)
一.简介 1.Jenkins 概述: Jenkins是一个功能强大的应用程序,允许持续集成和持续交付项目,无论用的是什么平台.这是一个免费的源代码,可以处理任何类型的构建或持续集成.集成Jenkins ...
- CRM企业管理系统对于企业的价值
对于企业来说,一个完整的工作流程可以概括为三个阶段:售前.售中.售后.每个阶段都需要不同的管理.此外,客户关系管理客户关系管理系统可以帮助企业在这三个阶段进行业务管理和客户管理,帮助企业更好地运作,增 ...
- 关于HTML的常用标签
目录 前言 html常用标签 排版标签 图像标签 链接标签 注释标签 预格式化文本pre标签&特殊字符 语义化标签 前言 本文主要是对html的常用标签一个总结归纳,对所学的内容做一个查漏补缺 ...
- redis-list实现
Redis 数据结构---链表 Redis的list底层实现使用的不是数组而是链表的数据结构 叫listnode 是一个双向链表 ListNode{ Struct listNode *prev / ...