1298 - One Theorem, One Year
Time Limit: 2 second(s) Memory Limit: 32 MB

A number is Almost-K-Prime if it has exactly K prime numbers (not necessarily distinct) in its prime factorization. For example, 12 = 2 * 2 * 3 is an Almost-3-Prime and 32 = 2 * 2 * 2 * 2 * 2 is an Almost-5-Prime number. A number X is called Almost-K-First-P-Prime if it satisfies the following criterions:

  1. X is an Almost-K-Prime and
  2. X has all and only the first P (P ≤ K) primes in its prime factorization.

For example, if K=3 and P=2, the numbers 18 = 2 * 3 * 3 and 12 = 2 * 2 * 3 satisfy the above criterions. And 630 = 2 * 3 * 3 * 5 * 7 is an example of Almost-5-First-4-Pime.

For a given K and P, your task is to calculate the summation of Φ(X) for all integers X such that X is an Almost-K-First-P-Prime.

Input

Input starts with an integer T (≤ 10000), denoting the number of test cases.

Each case starts with a line containing two integers K (1 ≤ K ≤ 500) and P (1 ≤ P ≤ K).

Output

For each case, print the case number and the result modulo 1000000007.

Sample Input

Output for Sample Input

3

3 2

5 4

99 45

Case 1: 10

Case 2: 816

Case 3: 49939643

Note

  1. In mathematics Φ(X) means the number of relatively prime numbers with respect to X which are smaller than X. Two numbers are relatively prime if their GCD (Greatest Common Divisor) is 1. For example, Φ(12) = 4, because the numbers that are relatively prime to 12 are: 1, 5, 7, 11.
  2. For the first case, K = 3 and P = 2 we have only two such numbers which are Almost-3-First-2-Prime, 18=2*3*3 and 12=2*2*3. The result is therefore, Φ(12) + Φ(18) = 10.

Problem Setter: Samir Ahmed
Special Thanks: Jane Alam Jan
思路:DP;状态转移方程dp[i][j]=dp[i-1][j-1]+dp[i][j-1];i表示前i个素数,j表示由前i个素数构成数的素数因子的长度,dp[i][j]存的是符合这个要求的所有数的和;
状态解释:当前末尾的数放的是第i个素数,那么它的前一个数放的是它的前一个素数或者是他本身。
所以dp先打个表,再根据欧拉函数n*((1-1/p1)*(1-1/p2).....);因为dp[i][j]是那些素因子都相同数的和,再将(p1*p2*....)的表打好an,把(p1-1)*(p2-1)*....bn打好
所以K=i,P=j;求的直就为dp[j][i]*(an[j]/bn[j])%mod;然后把bn[i]用费马小定理转换成逆元所以最后就为dp[j][i]*(an[j]*bn[j])%mod。
 1 #include<math.h>
2 #include<stdlib.h>
3 #include<stdio.h>
4 #include <algorithm>
5 #include<iostream>
6 #include<string.h>
7 #include<vector>
8 #include<map>
9 #include<math.h>
10 using namespace std;
11 typedef long long LL;
12 typedef unsigned long long ll;
13 bool prime[5000]= {0};
14 int su[600];
15 LL dp[600][600];
16 LL ola[600];
17 LL ola1[600];
18 const LL mod=1e9+7;
19 LL quick(int n,int m);
20 int main(void)
21 {
22 int i,j,k,p,q;
23 for(i=2; i<=100; i++)
24 {
25 for(j=i; i*j<=5000; j++)
26 {
27 prime[i*j]=true;
28 }
29 }
30 int ans=1;
31 for(i=2; i<=5000; i++)
32 {
33 if(!prime[i])
34 {
35 su[ans++]=i;
36 }
37 }
38 memset(dp,0,sizeof(dp));
39 dp[0][0]=1;
40 dp[1][1]=2;
41 for(i=1; i<=500; i++)
42 {
43 for(j=i; j<=500; j++)
44 {
45 dp[i][j]=(((dp[i][j-1]+dp[i-1][j-1])%mod)*(su[i]))%mod;
46 }
47 }
48 ola[1]=su[1];
49 ola1[1]=su[1]-1;
50 for(i=2; i<=500; i++)
51 {
52 ola[i]=(su[i]*ola[i-1])%mod;
53 ola1[i]=(su[i]-1)*ola1[i-1]%mod;
54 }
55 for(i=1; i<=500; i++)
56 {
57 ola[i]=quick(ola[i],mod-2);
58 }
59 scanf("%d",&k);
60 int s;
61 for(s=1; s<=k; s++)
62 {
63 scanf("%d %d",&p,&q);
64 LL cnt=dp[q][p];
65 LL cns=ola[q];
66 LL bns=ola1[q];
67 LL sum=((cnt*cns)%mod*bns)%mod;
68 printf("Case %d: ",s);
69 printf("%lld\n",sum);
70 }
71 return 0;
72 }
73 LL quick(int n,int m)
74 {
75 LL ans=1;
76 LL N=n;
77 while(m)
78 {
79 if(m&1)
80 {
81 ans=(ans*N)%mod;
82 }
83 N=(N*N)%mod;
84 m/=2;
85 }
86 return ans;
87 }

1298 - One Theorem, One Year的更多相关文章

  1. LightOj 1298 - One Theorem, One Year(DP + 欧拉)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1298 题意:给你两个数 n, p,表示一个数是由前 k 个素数组成的,共有 n 个素数 ...

  2. Parseval's theorem 帕塞瓦尔定理

    Source: wiki: Parseval's theorem As for signal processing, the power within certain frequency band = ...

  3. 利用Cayley-Hamilton theorem 优化矩阵线性递推

    平时有关线性递推的题,很多都可以利用矩阵乘法来解决. 时间复杂度一般是O(K3logn)因此对矩阵的规模限制比较大. 下面介绍一种利用利用Cayley-Hamilton theorem加速矩阵乘法的方 ...

  4. Kernel Methods (6) The Representer Theorem

    The Representer Theorem, 表示定理. 给定: 非空样本空间: \(\chi\) \(m\)个样本:\(\{(x_1, y_1), \dots, (x_m, y_m)\}, x_ ...

  5. 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 4 The Central Limit Theorem

    Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

  6. LightOJ1298 One Theorem, One Year(DP + 欧拉函数性质)

    题目 Source http://www.lightoj.com/volume_showproblem.php?problem=1298 Description A number is Almost- ...

  7. 生成树的个数——基尔霍夫定理(Matrix-Tree Theorem)

    树有很多种形态,给定结点个数,求生成不同形态二叉树的个数,显然要用到Catalan数列. 那如果给定一个图(Graph)\(G=(V,E)\),要求其最小生成树G',最好的方法莫过于Prim或Krus ...

  8. uva 11178 - Morley's Theorem

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  9. Dirichlet's Theorem on Arithmetic Progressions 分类: POJ 2015-06-12 21:07 7人阅读 评论(0) 收藏

    Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

随机推荐

  1. C#多个标题头合并

    protected void GridView1_RowCreated(object sender, GridViewRowEventArgs e) { switch (e.Row.RowType) ...

  2. 22 SHELL 获取当前路径

    常见的一种误区,是使用 pwd 命令,该命令的作用是"print name of current/working directory",这才是此命令的真实含义,当前的工作目录,这里 ...

  3. Maven 目录结构[转载]

    转载至:http://www.cnblogs.com/haippy/archive/2012/07/05/2577233.html Maven 标准目录结构 好的目录结构可以使开发人员更容易理解项目, ...

  4. C++ 害死人不偿命的(3n+1)猜想

    第一次刷PAT ,注意事项:就像普通编译器一样要导入头文件 还有 using namespace std:要不然会报错(鬼知道我经历了什么 微笑.jpg) 1 #include <iostrea ...

  5. How does “void *” differ in C and C++?

    C allows a void* pointer to be assigned to any pointer type without a cast, whereas C++ does not; th ...

  6. What happens when more restrictive access is given to a derived class method in C++?

    We have discussed a similar topic in Java here. Unlike Java, C++ allows to give more restrictive acc ...

  7. Linux下查看JDK安装路径

    在安装好Git.JDK和jenkins之后,就需要在jenkins中进行对应的设置,比如在全局工具配置模块,需要写入JDK的安装路径. 这篇博客,介绍几种常见的在Linux中查看JDK路径的方法... ...

  8. 跨平台调用之WebService

    一.简介 web service是一种跨编程语言和跨操作系统平台的远程调用技术,是基于网络的.分布式的模块化组件. 跨编程语言就是说服务器端程序采用 Java 编写,客户端程序则可以采用其他编程语言编 ...

  9. Spring Cloud Eureka源码分析之三级缓存的设计原理及源码分析

    Eureka Server 为了提供响应效率,提供了两层的缓存结构,将 Eureka Client 所需要的注册信息,直接存储在缓存结构中,实现原理如下图所示. 第一层缓存:readOnlyCache ...

  10. 12.16 Java继承

    首先 :继承,指一个对象直接使用另一对象的属性和方法. 继承的格式: public class 子类名 entends 父类名{}   /* 表示前面的子类继承父类 */ 例:public class ...