这道题算是真正意义上人生第一道期望的题?

题目大意:

给定一个n个点的,以1号点为根的树,每一次可以将一个点和它的子树全部染黑,求染黑所有点的期望

QwQ说实话,我对期望这种东西,一点也不理解。。。

根据期望的线性性,计算出每个点比选择的期望次数,然后直接相加

所以得出\(E(x) = \frac{1}{dep[x]}\)

这里之所以是$ \frac{1}{dep[x]}$是因为我们求的期望是每个点把自己及自己子树染黑的概率(而不是靠祖先)

或者换种说法:

整棵树的期望操作次数太大,难以找到方法。这时我们需要突破口。

该如何将大问题转化为小问题呢?我们发现,一棵树是可以分成好几颗子树的,而子树分解的最终状态就是所有的点。那么,我们是不是可以计算出 每个点被染黑的期望操作次数,然后相加就是整棵树的了?答案是当然可以。

这里需要注意的是,对于每个点的操作次数是指的在这个点上的操作。对于每一个点,如果其祖先被染黑了,它自己也会被顺带染黑,而这个对于该点来说是没有进行操作的。所以得出对于点x:\(E(x) = \frac{1}{dep[x]}\)

直接上代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue> using namespace std; inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
} const int maxn = 1e5+1e2;
const int maxm = 2e5+1e2; int point[maxn],nxt[maxm],to[maxm];
double dep[maxn];
int vis[maxn];
int n,m;
int cnt; void addedge(int x,int y)
{
nxt[++cnt]=point[x];
to[cnt]=y;
point[x]=cnt;
} void dfs(int x,double dp)
{
dep[x]=dp;
vis[x]=1;
for (int i=point[x];i;i=nxt[i])
{
int p = to[i];
if (!vis[p])
{
dfs(p,dp+1.0);
}
}
} double ans=0; int main()
{
scanf("%d",&n);
for (int i=1;i<n;i++)
{
int x,y;
x=read(),y=read();
addedge(x,y);
addedge(y,x);
}
//cout<<"gg"<<endl;
dep[1]=1;
dfs(1,1.0);
for (int i=1;i<=n;i++)
{
ans=ans+1.0/dep[i];
}
printf("%.8lf",ans);
return 0;
}

CF280C Game on tree(期望dp)的更多相关文章

  1. cf280C. Game on Tree(期望线性性)

    题意 题目链接 Sol 开始想的dp,发现根本不能转移(貌似只能做链) 根据期望的线性性,其中\(ans = \sum_{1 * f(x)}\) \(f(x)\)表示删除\(x\)节点的概率,显然\( ...

  2. Nowcoder156F 托米的游戏/CF280C Game on tree 期望

    传送门 题意:给出一棵树,在每一轮中,随机选择一个点将它与它的子树割掉,最后割掉所有点时游戏结束,问游戏期望进行多少轮.$N \leq 10^5$ 和的期望等于期望的和,我们考虑每一个点对最后答案的贡 ...

  3. CF280C Game on Tree 期望

    期望多少次操作,我们可以看做是染黑了多少节点 那么,我们可以用期望的线性性质,求出每个节点被染黑的概率之和(权值为$1$) 一个节点$u$被染黑仅跟祖先有关 我们把$u$到祖先的链抽出来 只要选取链上 ...

  4. 2018.09.09 codeforces280C. Game on Tree(期望dp)

    传送门 期望dp经典题. 显然只需要算出每个点被染黑的期望步数. 点i被染黑的期望是1/(1到i这条链上的节点数)" role="presentation" style= ...

  5. CF280C Game on Tree

    题目链接 : CF280C Game on Tree 题意 : 给定一棵n个节点的树T 根为一(我咕的翻译漏掉了...) 每次随机选择一个未被删除的点 并将它的子树删除 求删整棵树的期望步数 n ∈ ...

  6. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  7. [NOIP2016]换教室 D1 T3 Floyed+期望DP

    [NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...

  8. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  9. 【BZOJ-4008】亚瑟王 概率与期望 + DP

    4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 5 ...

  10. 期望dp BZOJ3450+BZOJ4318

    BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...

随机推荐

  1. 解决->maven下载失败bug

    一.前言: 经过一个下午的奋斗(谷歌,视频...重装)后终,于暂时解决了上一篇文章中的bug 传送门:https://blog.csdn.net/weixin_44092288/article/det ...

  2. Python - 面向对象编程 - 新式类和旧式类

    object object 是 Python 为所有对象提供的父类,默认提供一些内置的属性.方法:可以使用 dir 方法查看 新式类 以 object 为父类的类,推荐使用 在 Python 3.x ...

  3. Python之requests模块-session

    http协议本身是无状态的,为了让请求之间保持状态,有了session和cookie机制.requests也提供了相应的方法去操纵它们. requests中的session对象能够让我们跨http请求 ...

  4. Pytest系列(19)- 我们需要掌握的allure特性

    如果你还想从头学起Pytest,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1690628.html 前言 前面我们介绍了allure的 ...

  5. Mysql常用sql语句(7)- order by 对查询结果进行排序

    测试必备的Mysql常用sql语句系列 https://www.cnblogs.com/poloyy/category/1683347.html 前言 通过select出来的结果集是按表中的顺序来排序 ...

  6. MapperScannerConfigurer之sqlSessionFactoryBeanName注入方式

    Spring整合Mybatis时,项目启动时报错:(MapperScannerConfigurer之sqlSessionFactoryBeanName注入方式) pringframework.bean ...

  7. Identity角色管理五(添加用户到角色组)

    因需要在用户列表中点详情按钮来到当前页,所以需要展示分组详情,并展示当前所属角色组的用户 public async Task<ActionResult> Details(string id ...

  8. Winform EF CodeFist方式连接数据库

    直接生成ado.net 实体数据模型挺方便的,但只有一步步的手写代码才能更好的理解EF,在学习asp.net core过程中手写代码已经明白了怎么回事,但实现过程有些麻烦不知道如何记录,但Winfor ...

  9. Vue组件传值(三)之 深层嵌套组件传值 - $attrs 和 $listeners

    $attrs 包含了父作用域中不作为 prop 被识别 (且获取) 的特性绑定 (class 和 style 除外).当一个组件没有声明任何 prop 时,这里会包含所有父作用域的绑定 (class和 ...

  10. JavaScript进阶面向对象ES6

    类和对象 对象:万物皆对象,对象是一个具体的事物,看得见摸得着的实物 对象是由属性和方法组成的: 属性:事物的特征,再对象中用属性来表示(常用名词) 方法:事物的行为,再对象中用方法来表示(常用动词) ...