洛谷P1066 2^k进制数(题解)(递推版)
https://www.luogu.org/problemnew/show/P1066(题目传送)
(题解)https://www.luogu.org/problemnew/solution/P1066;
首先普及一下知识:一个2^k进制n位数转换成2进制数时最多有n*k位;一个n进制数的每位数字属于集合{0,1,……,n-1}。
这样我们就知道给出w、k后r的位数最多为wei=w/k向上取整,但要注意,如果w%k有余,则r在最高位上不能把集合{0,1,……,n-1}的数都取一遍。
又知道r的位数可以是2到wei的任意一个数,且r的位数为i时的状态又可以从r的位数为i-1推过来:
设数组a[i][j]表示r的位数为i、第i位为j时所有符合条件r的数目,则a[i][j]=a[i-1][j+1]+……+a[i-1][2^k-1]。
由此我们可以从r的位数为2时一直推至r的位数为wei。最后别忘了最高位的特殊处理。
AC代码:
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
int a[][][],tot[],mmax;
int pow(int a,int b)
{
int ans=,with=a;
while(b)
{
if(b&) ans*=with;
with*=with;
b>>=;
}
return ans;
}
void jiafa(int j[],int a[])
{
int lb=;
while(lb<=j[]||lb<=a[])
{
j[lb]+=a[lb];
if(j[lb]>=)
{
j[lb]%=;
j[lb+]++;
}
lb++;
}
while(j[lb]>=)
{
j[lb]%=;
lb++;
j[lb]++;
}
while(!j[lb]&&lb>) lb--;
if(lb>j[]) j[]=lb;
}
void jiafa1(int a[],int b)
{
int lb=;
while(b)
{
a[++lb]=b%;
b/=;
}
a[]=lb;
jiafa(tot,a);
}
int main()
{
int k,w;
cin>>k>>w;
int g=w/k;
bool youyu=;
int mmax2;
if(w%k)
{
g++;
youyu=;
mmax2=pow(,w%k)-;
}
mmax=pow(,k)-;
for(int i=;i<mmax;i++) jiafa1(a[][i],mmax-i);
int l=,n=;
for(int i=;i<=g;i++)
{
if(i==g&&youyu&&mmax2<mmax)
{
for(int i=mmax-;i>mmax2;i--)
jiafa(a[n][mmax2],a[l][i]);
jiafa(tot,a[n][mmax2]);
for(int j=mmax2-;j>=;j--)
{
memcpy(a[n][j],a[n][j+],sizeof(a[n][j+]));
jiafa(a[n][j],a[l][j+]);
jiafa(tot,a[n][j]);
}
break;
}
jiafa(a[n][mmax-],a[l][mmax]);
jiafa(tot,a[n][mmax-]);
for(int j=mmax-;j>=;j--)
{
memcpy(a[n][j],a[n][j+],sizeof(a[n][j+]));
jiafa(a[n][j],a[l][j+]);
jiafa(tot,a[n][j]);
}
for(int j=;j<=mmax;j++)
memset(a[l][j],,sizeof(a[l][j]));
n++;l++;
if(n==) n=;
if(l==) l=;
}
int lt=tot[];
while(!tot[lt]&<>) lt--;
for(;lt>;lt--) cout<<tot[lt];
return ;
}
洛谷P1066 2^k进制数(题解)(递推版)的更多相关文章
- 洛谷 P1066 2^k进制数
P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...
- 洛谷P1066 2^k进制数
P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...
- [luogu]P1066 2^k进制数[数学][递推][高精度]
[luogu]P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻 ...
- [NOIP2006] 提高组 洛谷P1066 2^k进制数
题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后 ...
- 洛谷1066 2^k进制数
原题链接 大力猜结论竟然猜对了.. 对于一对\(k,w\),我们可以把\(w\)位划分成\(k\)位一段的形式,每一段就是转换成十进制后的一位,这个从题面的解释中应该可以理解. 先不考虑可能多出(即剩 ...
- C#版 - Leetcode 504. 七进制数 - 题解
C#版 - Leetcode 504. 七进制数 - 题解 Leetcode 504. Base 7 在线提交: https://leetcode.com/problems/base-7/ 题目描述 ...
- P1066 2^k进制数
传送门 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进 ...
- [递归回溯] LeetCode 504七进制数(摸鱼版)
LeetCode 七进制数 前言: 这个就没什么好说的了 题目:略 步入正题 进位制转换 10 -n 余数加倒叙 没什么好讲的直接上七进制代码 偷个懒 10进位制转7 class Solution { ...
- [Luogu P1066] 2^k进制数 (组合数或DP)
题面 传送门:https://www.luogu.org/problemnew/show/P1066 Solution 这是一道神奇的题目,我们有两种方法来处理这个问题,一种是DP,一种是组合数. 这 ...
随机推荐
- 关于在Idea 创建Maven项目时,无法在source文件下创建servlet文件问题解决!
很简单:打开.iml文件,
- 升鲜宝V2.0_生鲜配送行业,对生鲜配送系统开发与实施的深度对比与思考_升鲜宝生鲜配送系统_15382353715_余东升
升鲜宝V2.0_生鲜配送行业,对生鲜配送系统开发与实施的深度对比与思考_升鲜宝生鲜配送系统_15382353715_余东升 笔者从事生鲜配送软件开发接近10年,前前后后研究了很多 ...
- Openlayers系列(一)关于地图投影相关错误的解决方案
背景 近期开发以MongoDB为基础的分布式地理数据管理平台系统,被要求做一个简单的demo给客户进行演示.于是笔者便打算向数据库中存储一部分瓦片数据,写一个简单的存取服务器,使用Openlayers ...
- C#中文件下载的几种方法演示源码
内容过程,把内容过程比较重要的内容做个珍藏,如下的内容是关于C#中文件下载的几种方法演示的内容,应该是对各朋友有较大好处. using System;using System.Data;using S ...
- JS中如何进行对象的深拷贝
在JS中,一般的=号传递的都是对象/数组的引用,并没有真正地拷贝一个对象,那如何进行对象的深度拷贝呢?如果你对此也有疑问,这篇文章或许能够帮助到你 一.对象引用.浅层拷贝与深层拷贝的区别 js的对象引 ...
- 如何在element-UI 组件的change事件中传递自定义参数
以select为例,如果select写在循环里,触发change事件时可能不只需要传递被选中项的值,还要传递index过去,来改变同一循环中的其他标签的状态. 下面这样写是无效的: @change=& ...
- MySQL replace into (insert into 的增强版)
在使用SQL语句进行数据表插入insert操作时,如果表中定义了主键,插入具有相同主键的记录会报错: Error Code: 1062. Duplicate entry 'XXXXX' for ke ...
- Java设置session超时(失效)的时间
在一般系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session具体设置的方法有三种:1.在web容器中设置(以tomcat为例)在tom ...
- BigDecimal比较大小,BigDecimal判断是否为0
原文:https://blog.csdn.net/qq_34926773/article/details/83419004 BigDecimal类型的数据,需要比较大小:声明BigDescimal: ...
- 云计算openstack共享组件(2)——Memcache 缓存系统
一.缓存系统 在大型海量并发访问网站及openstack等集群中,对于关系型数据库,尤其是大型关系型数据库,如果对其进行每秒上万次的并发访问,并且每次访问都在一个有上亿条记录的数据表中查询某条记录时, ...