再谈AbstractQueuedSynchronizer2:共享模式与基于Condition的等待/通知机制实现
共享模式acquire实现流程
上文我们讲解了AbstractQueuedSynchronizer独占模式的acquire实现流程,本文趁热打铁继续看一下AbstractQueuedSynchronizer共享模式acquire的实现流程。连续两篇文章的学习,也可以对比独占模式acquire和共享模式acquire的区别,加深对于AbstractQueuedSynchronizer的理解。
先看一下共享模式acquire的实现,方法为acquireShared和acquireSharedInterruptibly,两者差别不大,区别就在于后者有中断处理,以acquireShared为例:
- public final void acquireShared(int arg) {
- if (tryAcquireShared(arg) < 0)
- doAcquireShared(arg);
- }
这里就能看出第一个差别来了:独占模式acquire的时候子类重写的方法tryAcquire返回的是boolean,即是否tryAcquire成功;共享模式acquire的时候,返回的是一个int型变量,判断是否<0。doAcquireShared方法的实现为:
- private void doAcquireShared(int arg) {
- final Node node = addWaiter(Node.SHARED);
- boolean failed = true;
- try {
- boolean interrupted = false;
- for (;;) {
- final Node p = node.predecessor();
- if (p == head) {
- int r = tryAcquireShared(arg);
- if (r >= 0) {
- setHeadAndPropagate(node, r);
- p.next = null; // help GC
- if (interrupted)
- selfInterrupt();
- failed = false;
- return;
- }
- }
- if (shouldParkAfterFailedAcquire(p, node) &&
- parkAndCheckInterrupt())
- interrupted = true;
- }
- } finally {
- if (failed)
- cancelAcquire(node);
- }
- }
我们来分析一下这段代码做了什么:
- addWaiter,把所有tryAcquireShared<0的线程实例化出一个Node,构建为一个FIFO队列,这和独占锁是一样的
- 拿当前节点的前驱节点,只有前驱节点是head的节点才能tryAcquireShared,这和独占锁也是一样的
- 前驱节点不是head的,执行"shouldParkAfterFailedAcquire() && parkAndCheckInterrupt()",for(;;)循环,"shouldParkAfterFailedAcquire()"方法执行2次,当前线程阻塞,这和独占锁也是一样的
确实,共享模式下的acquire和独占模式下的acquire大部分逻辑差不多,最大的差别在于tryAcquireShared成功之后,独占模式的acquire是直接将当前节点设置为head节点即可,共享模式会执行setHeadAndPropagate方法,顾名思义,即在设置head之后多执行了一步propagate操作。setHeadAndPropagate方法源码为:
- private void setHeadAndPropagate(Node node, int propagate) {
- Node h = head; // Record old head for check below
- setHead(node);
- /*
- * Try to signal next queued node if:
- * Propagation was indicated by caller,
- * or was recorded (as h.waitStatus) by a previous operation
- * (note: this uses sign-check of waitStatus because
- * PROPAGATE status may transition to SIGNAL.)
- * and
- * The next node is waiting in shared mode,
- * or we don't know, because it appears null
- *
- * The conservatism in both of these checks may cause
- * unnecessary wake-ups, but only when there are multiple
- * racing acquires/releases, so most need signals now or soon
- * anyway.
- */
- if (propagate > 0 || h == null || h.waitStatus < 0) {
- Node s = node.next;
- if (s == null || s.isShared())
- doReleaseShared();
- }
- }
第3行的代码设置重设head,第2行的代码由于第3行的代码要重设head,因此先定义一个Node型变量h获得原head的地址,这两行代码很简单。
第19行~第23行的代码是独占锁和共享锁最不一样的一个地方,我们再看独占锁acquireQueued的代码:
- final boolean acquireQueued(final Node node, int arg) {
- boolean failed = true;
- try {
- boolean interrupted = false;
- for (;;) {
- final Node p = node.predecessor();
- if (p == head && tryAcquire(arg)) {
- setHead(node);
- p.next = null; // help GC
- failed = false;
- return interrupted;
- }
- if (shouldParkAfterFailedAcquire(p, node) &&
- parkAndCheckInterrupt())
- interrupted = true;
- }
- } finally {
- if (failed)
- cancelAcquire(node);
- }
- }
这意味着独占锁某个节点被唤醒之后,它只需要将这个节点设置成head就完事了,而共享锁不一样,某个节点被设置为head之后,如果它的后继节点是SHARED状态的,那么将继续通过doReleaseShared方法尝试往后唤醒节点,实现了共享状态的向后传播。
共享模式release实现流程
上面讲了共享模式下acquire是如何实现的,下面再看一下release的实现流程,方法为releaseShared:
- public final boolean releaseShared(int arg) {
- if (tryReleaseShared(arg)) {
- doReleaseShared();
- return true;
- }
- return false;
- }
tryReleaseShared方法是子类实现的,如果tryReleaseShared成功,那么执行doReleaseShared()方法:
- private void doReleaseShared() {
- /*
- * Ensure that a release propagates, even if there are other
- * in-progress acquires/releases. This proceeds in the usual
- * way of trying to unparkSuccessor of head if it needs
- * signal. But if it does not, status is set to PROPAGATE to
- * ensure that upon release, propagation continues.
- * Additionally, we must loop in case a new node is added
- * while we are doing this. Also, unlike other uses of
- * unparkSuccessor, we need to know if CAS to reset status
- * fails, if so rechecking.
- */
- for (;;) {
- Node h = head;
- if (h != null && h != tail) {
- int ws = h.waitStatus;
- if (ws == Node.SIGNAL) {
- if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
- continue; // loop to recheck cases
- unparkSuccessor(h);
- }
- else if (ws == 0 &&
- !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
- continue; // loop on failed CAS
- }
- if (h == head) // loop if head changed
- break;
- }
- }
主要是两层逻辑:
- 头结点本身的waitStatus是SIGNAL且能通过CAS算法将头结点的waitStatus从SIGNAL设置为0,唤醒头结点的后继节点
- 头结点本身的waitStatus是0的话,尝试将其设置为PROPAGATE状态的,意味着共享状态可以向后传播
Condition的await()方法实现原理----构建等待队列
我们知道,Condition是用于实现通知/等待机制的,和Object的wait()/notify()一样,由于本文之前描述AbstractQueuedSynchronizer的共享模式的篇幅不是很长,加之Condition也是AbstractQueuedSynchronizer的一部分,因此将Condition也放在这里写了。
Condition分为await()和signal()两部分,前者用于等待、后者用于唤醒,首先看一下await()是如何实现的。Condition本身是一个接口,其在AbstractQueuedSynchronizer中的实现为ConditionObject:
- public class ConditionObject implements Condition, java.io.Serializable {
- private static final long serialVersionUID = 1173984872572414699L;
- /** First node of condition queue. */
- private transient Node firstWaiter;
- /** Last node of condition queue. */
- private transient Node lastWaiter;
- ...
- }
这里贴了一些字段定义,后面都是方法就不贴了,会对重点方法进行分析的。从字段定义我们可以看到,ConditionObject全局性地记录了第一个等待的节点与最后一个等待的节点。
像ReentrantLock每次要使用ConditionObject,直接new一个ConditionObject出来即可。我们关注一下await()方法的实现:
- public final void await() throws InterruptedException {
- if (Thread.interrupted())
- throw new InterruptedException();
- Node node = addConditionWaiter();
- int savedState = fullyRelease(node);
- int interruptMode = 0;
- while (!isOnSyncQueue(node)) {
- LockSupport.park(this);
- if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
- break;
- }
- if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
- interruptMode = REINTERRUPT;
- if (node.nextWaiter != null) // clean up if cancelled
- unlinkCancelledWaiters();
- if (interruptMode != 0)
- reportInterruptAfterWait(interruptMode);
- }
第2行~第3行的代码用于处理中断,第4行代码比较关键,添加Condition的等待者,看一下实现:
- private Node addConditionWaiter() {
- Node t = lastWaiter;
- // If lastWaiter is cancelled, clean out.
- if (t != null && t.waitStatus != Node.CONDITION) {
- unlinkCancelledWaiters();
- t = lastWaiter;
- }
- Node node = new Node(Thread.currentThread(), Node.CONDITION);
- if (t == null)
- firstWaiter = node;
- else
- t.nextWaiter = node;
- lastWaiter = node;
- return node;
- }
首先拿到队列(注意数据结构,Condition构建出来的也是一个队列)中最后一个等待者,紧接着第4行的的判断,判断最后一个等待者的waitStatus不是CONDITION的话,执行第5行的代码,解绑取消的等待者,因为通过第8行的代码,我们看到,new出来的Node的状态都是CONDITION的。
那么unlinkCancelledWaiters做了什么?里面的流程就不看了,就是一些指针遍历并判断状态的操作,总结一下就是:从头到尾遍历每一个Node,遇到Node的waitStatus不是CONDITION的就从队列中踢掉,该节点的前后节点相连。
接着第8行的代码前面说过了,new出来了一个Node,存储了当前线程,waitStatus是CONDITION,接着第9行~第13行的操作很好理解:
- 如果lastWaiter是null,说明FIFO队列中没有任何Node,firstWaiter=Node
- 如果lastWaiter不是null,说明FIFO队列中有Node,原lastWaiter的next指向Node
- 无论如何,新加入的Node编程lastWaiter,即新加入的Node一定是在最后面
用一张图表示一下构建的数据结构就是:
对比学习,我们总结一下Condition构建出来的队列和AbstractQueuedSynchronizer构建出来的队列的差别,主要体现在2点上:
- AbstractQueuedSynchronizer构建出来的队列,头节点是一个没有Thread的空节点,其标识作用,而Condition构建出来的队列,头节点就是真正等待的节点
- AbstractQueuedSynchronizer构建出来的队列,节点之间有next与pred相互标识该节点的前一个节点与后一个节点的地址,而Condition构建出来的队列,只使用了nextWaiter标识下一个等待节点的地址
整个过程中,我们看到没有使用任何CAS操作,firstWaiter和lastWaiter也没有用volatile修饰,其实原因很简单:要await()必然要先lock(),既然lock()了就表示没有竞争,没有竞争自然也没必要使用volatile+CAS的机制去保证什么。
Condition的await()方法实现原理----线程等待
前面我们看了Condition构建等待队列的过程,接下来我们看一下等待的过程,await()方法的代码比较短,再贴一下:
- public final void await() throws InterruptedException {
- if (Thread.interrupted())
- throw new InterruptedException();
- Node node = addConditionWaiter();
- int savedState = fullyRelease(node);
- int interruptMode = 0;
- while (!isOnSyncQueue(node)) {
- LockSupport.park(this);
- if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
- break;
- }
- if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
- interruptMode = REINTERRUPT;
- if (node.nextWaiter != null) // clean up if cancelled
- unlinkCancelledWaiters();
- if (interruptMode != 0)
- reportInterruptAfterWait(interruptMode);
- }
构建完毕队列之后,执行第5行的fullyRelease方法,顾名思义:fullyRelease方法的作用是完全释放Node的状态。方法实现为:
- final int fullyRelease(Node node) {
- boolean failed = true;
- try {
- int savedState = getState();
- if (release(savedState)) {
- failed = false;
- return savedState;
- } else {
- throw new IllegalMonitorStateException();
- }
- } finally {
- if (failed)
- node.waitStatus = Node.CANCELLED;
- }
- }
这里第4行获取state,第5行release的时候将整个state传过去,理由是某线程可能多次调用了lock()方法,比如调用了10次lock,那么此线程就将state加到了10,所以这里要将10传过去,将状态全部释放,这样后面的线程才能重新从state=0开始竞争锁,这也是方法被命名为fullyRelease的原因,因为要完全释放锁,释放锁之后,如果有竞争锁的线程,那么就唤醒第一个,这都是release方法的逻辑了,前面的文章详细讲解过。
接着看await()方法的第7行判断"while(!isOnSyncQueue(node))":
- final boolean isOnSyncQueue(Node node) {
- if (node.waitStatus == Node.CONDITION || node.prev == null)
- return false;
- if (node.next != null) // If has successor, it must be on queue
- return true;
- /*
- * node.prev can be non-null, but not yet on queue because
- * the CAS to place it on queue can fail. So we have to
- * traverse from tail to make sure it actually made it. It
- * will always be near the tail in calls to this method, and
- * unless the CAS failed (which is unlikely), it will be
- * there, so we hardly ever traverse much.
- */
- return findNodeFromTail(node);
- }
注意这里的判断是Node是否在AbstractQueuedSynchronizer构建的队列中而不是Node是否在Condition构建的队列中,如果Node不在AbstractQueuedSynchronizer构建的队列中,那么调用LockSupport的park方法阻塞。
至此调用await()方法的线程构建Condition等待队列--释放锁--等待的过程已经全部分析完毕。
Condition的signal()实现原理
上面的代码分析了构建Condition等待队列--释放锁--等待的过程,接着看一下signal()方法通知是如何实现的:
- public final void signal() {
- if (!isHeldExclusively())
- throw new IllegalMonitorStateException();
- Node first = firstWaiter;
- if (first != null)
- doSignal(first);
- }
首先从第2行的代码我们看到,要能signal(),当前线程必须持有独占锁,否则抛出异常IllegalMonitorStateException。
那么真正操作的时候,获取第一个waiter,如果有waiter,调用doSignal方法:
- private void doSignal(Node first) {
- do {
- if ( (firstWaiter = first.nextWaiter) == null)
- lastWaiter = null;
- first.nextWaiter = null;
- } while (!transferForSignal(first) &&
- (first = firstWaiter) != null);
- }
第3行~第5行的代码很好理解:
- 重新设置firstWaiter,指向第一个waiter的nextWaiter
- 如果第一个waiter的nextWaiter为null,说明当前队列中只有一个waiter,lastWaiter置空
- 因为firstWaiter是要被signal的,因此它没什么用了,nextWaiter置空
接着执行第6行和第7行的代码,这里重点就是第6行的transferForSignal方法:
- final boolean transferForSignal(Node node) {
- /*
- * If cannot change waitStatus, the node has been cancelled.
- */
- if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
- return false;
- /*
- * Splice onto queue and try to set waitStatus of predecessor to
- * indicate that thread is (probably) waiting. If cancelled or
- * attempt to set waitStatus fails, wake up to resync (in which
- * case the waitStatus can be transiently and harmlessly wrong).
- */
- Node p = enq(node);
- int ws = p.waitStatus;
- if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
- LockSupport.unpark(node.thread);
- return true;
- }
方法本意是将一个节点从Condition队列转换为AbstractQueuedSynchronizer队列,总结一下方法的实现:
- 尝试将Node的waitStatus从CONDITION置为0,这一步失败直接返回false
- 当前节点进入调用enq方法进入AbstractQueuedSynchronizer队列
- 当前节点通过CAS机制将waitStatus置为SIGNAL
最后上面的步骤全部成功,返回true,返回true唤醒等待节点成功。从唤醒的代码我们可以得出一个重要结论:某个await()的节点被唤醒之后并不意味着它后面的代码会立即执行,它会被加入到AbstractQueuedSynchronizer队列的尾部,只有前面等待的节点获取锁全部完毕才能轮到它。
代码分析到这里,我想类似的signalAll方法也没有必要再分析了,显然signalAll方法的作用就是将所有Condition队列中等待的节点逐一队列中从移除,由CONDITION状态变为SIGNAL状态并加入AbstractQueuedSynchronizer队列的尾部。
代码示例
可能大家看了我分析半天代码会有点迷糊,这里最后我贴一段我用于验证上面Condition结论的示例代码,首先建立一个Thread,我将之命名为ConditionThread:
- /**
- * @author 五月的仓颉http://www.cnblogs.com/xrq730/p/7067904.html
- */
- public class ConditionThread implements Runnable {
- private Lock lock;
- private Condition condition;
- public ConditionThread(Lock lock, Condition condition) {
- this.lock = lock;
- this.condition = condition;
- }
- @Override
- public void run() {
- if ("线程0".equals(JdkUtil.getThreadName())) {
- thread0Process();
- } else if ("线程1".equals(JdkUtil.getThreadName())) {
- thread1Process();
- } else if ("线程2".equals(JdkUtil.getThreadName())) {
- thread2Process();
- }
- }
- private void thread0Process() {
- try {
- lock.lock();
- System.out.println("线程0休息5秒");
- JdkUtil.sleep(5000);
- condition.signal();
- System.out.println("线程0唤醒等待线程");
- } finally {
- lock.unlock();
- }
- }
- private void thread1Process() {
- try {
- lock.lock();
- System.out.println("线程1阻塞");
- condition.await();
- System.out.println("线程1被唤醒");
- } catch (InterruptedException e) {
- } finally {
- lock.unlock();
- }
- }
- private void thread2Process() {
- try {
- System.out.println("线程2想要获取锁");
- lock.lock();
- System.out.println("线程2获取锁成功");
- } finally {
- lock.unlock();
- }
- }
- }
这个类里面的方法就不解释了,反正就三个方法片段,根据线程名判断,每个线层执行的是其中的一个代码片段。写一段测试代码:
- /**
- * @author 五月的仓颉http://www.cnblogs.com/xrq730/p/7067904.html
- */
- @Test
- public void testCondition() throws Exception {
- Lock lock = new ReentrantLock();
- Condition condition = lock.newCondition();
- // 线程0的作用是signal
- Runnable runnable0 = new ConditionThread(lock, condition);
- Thread thread0 = new Thread(runnable0);
- thread0.setName("线程0");
- // 线程1的作用是await
- Runnable runnable1 = new ConditionThread(lock, condition);
- Thread thread1 = new Thread(runnable1);
- thread1.setName("线程1");
- // 线程2的作用是lock
- Runnable runnable2 = new ConditionThread(lock, condition);
- Thread thread2 = new Thread(runnable2);
- thread2.setName("线程2");
- thread1.start();
- Thread.sleep(1000);
- thread0.start();
- Thread.sleep(1000);
- thread2.start();
- thread1.join();
- }
测试代码的意思是:
- 线程1先启动,获取锁,调用await()方法等待
- 线程0后启动,获取锁,休眠5秒准备signal()
- 线程2最后启动,获取锁,由于线程0未使用完毕锁,因此线程2排队,可以此时由于线程0还未signal(),因此线程1在线程0执行signal()后,在AbstractQueuedSynchronizer队列中的顺序是在线程2后面的
代码执行结果为:
- 线程1阻塞
- 线程0休息5秒
- 线程2想要获取锁
- 线程0唤醒等待线程
- 线程2获取锁成功
- 线程1被唤醒
符合我们的结论:signal()并不意味着被唤醒的线程立即执行。由于线程2先于线程0排队,因此看到第5行打印的内容,线程2先获取锁。
再谈AbstractQueuedSynchronizer2:共享模式与基于Condition的等待/通知机制实现的更多相关文章
- 再谈AbstractQueuedSynchronizer:共享模式与基于Condition的等待/通知机制实现
共享模式acquire实现流程 上文我们讲解了AbstractQueuedSynchronizer独占模式的acquire实现流程,本文趁热打铁继续看一下AbstractQueuedSynchroni ...
- Java 并发编程-再谈 AbstractQueuedSynchronizer 2:共享模式与基于 Condition 的等待 / 通知机制实现
共享模式acquire实现流程 上文我们讲解了AbstractQueuedSynchronizer独占模式的acquire实现流程,本文趁热打铁继续看一下AbstractQueuedSynchroni ...
- 【网络】再谈select, iocp, epoll,kqueue及各种I/O复用机制 && Reactor与Proactor的概念
首先,介绍几种常见的I/O模型及其区别,如下: blocking I/O nonblocking I/O I/O multiplexing (select and poll) signal drive ...
- 12.详解Condition的await和signal等待通知机制
1.Condition简介 任何一个java对象都天然继承于Object类,在线程间实现通信的往往会应用到Object的几个方法,比如wait(),wait(long timeout),wait(lo ...
- 详解Condition的await和signal等待/通知机制
本人免费整理了Java高级资料,涵盖了Java.Redis.MongoDB.MySQL.Zookeeper.Spring Cloud.Dubbo高并发分布式等教程,一共30G,需要自己领取.传送门:h ...
- Java并发编程,Condition的await和signal等待通知机制
Condition简介 Object类是Java中所有类的父类, 在线程间实现通信的往往会应用到Object的几个方法: wait(),wait(long timeout),wait(long tim ...
- 显式锁(四)Lock的等待通知机制Condition
任意一个Java对象,都拥有一组监视器方法(定义在根类Object上),主要包括:wait( ).wait(long timeout).notify().notifyAll()方法:这些方法与关 ...
- ReentrantLock等待通知机制Condition介绍
Object类中的wait(),notify()和notifyAll()可以实现线程的等待通知模型,同样在ReentrantLock中可以借助Condition来完成这种机制.本篇就简要介绍Condi ...
- Lock中使用Condition实现等待通知
Condition类有很好的灵活性,可以实现多路通知功能,一个Lock对象中可以创建多个Condition对象实例,线程对象可以注册在指定的Condition中,进而有选择的进行线程通知,在调度线程上 ...
随机推荐
- SSL WSS HTTPS
SSLSSL(Secure Socket Layer,安全套接层) 简单来说是一种加密技术, 通过它, 我们可以在通信的双方上建立一个安全的通信链路, 因此数据交互的双方可以安全地通信, 而不需要担心 ...
- MongoDB中文档操作(二)
一.插入文档 1.db.集合名.insert() 插入一个:db.user.insert({name:"Join",age:13,address:"beijing& ...
- 利用java反射机制实现读取excel表格中的数据
如果直接把excel表格中的数据导入数据库,首先应该将excel中的数据读取出来. 为了实现代码重用,所以使用了Object,而最终的结果是要获取一个list如List<User>.Lis ...
- python基础autopep8__python代码规范
关于PEP 8 PEP 8,Style Guide for Python Code,是Python官方推出编码约定,主要是为了保证 Python 编码的风格一致,提高代码的可读性. 官网地址:http ...
- Python 员工信息管理系统
学Python将近一个月了,第一次写了两百多行代码,一个很简单的脚本. 员工信息管理系统: 需求: 1.管理员账户能够增加,删除,修改,查询员工信息,并且设置管理员账户. 2.普通账户可以查看所有员工 ...
- HashMap浅入理解
HashMap不能保证元素的顺序,HashMap能够将键设为null,也可以将值设为null,与之对应的是Hashtable,(注意大小写:不是HashTable),Hashtable不能将键和值设为 ...
- 用beego开发服务端应用
用beego开发服务端应用 说明 Quick Start 安装 创建应用 编译运行 打包发布 代码生成 开发文档 目录结构说明 使用配置文件 beego默认参数 路由设置 路由的表述方式 直接设置路由 ...
- Spring事务管理----事物回滚
Spring的事务管理默认只对未检查异常(java.lang.RuntimeException及其子类)进行回滚,如果一个方法抛出Checked异常,Spring事务管理默认不进行回滚. 改变默认方式 ...
- HttpClient4 TIME_WAIT和CLOSE_WAIT
最近,公司的接口服务器(客户端,向外发送数据)频繁出现了connect timeout 以及readtime out 的情况,经过运维平台检测,并没有网络延时的情况.于是,开始怀疑连接池出了问题. 使 ...
- Linux上好用的工具集合
1.截图工具 WIndows下有Snipaste,Ubuntu自带的截图工具不能涂鸦等,不好用.Linux下可以使用deepin-screenshot(深度截图,https://www.deepin. ...