一、前述

在 Kaggle 的很多比赛中,我们可以看到很多 winner 喜欢用 xgboost,而且获得非常好的表现,今天就来看看 xgboost 到底是什么以及如何应用。Gradient boosting 是 boosting 的其中一种方法,所谓 Boosting ,就是将弱分离器 f_i(x) 组合起来形成强分类器 F(x) 的一种方法。

二、具体

1、举例

说明:在tree1和tree2里面 男孩的得分值是2.9,实际是将不同的权重值加和 。 相当于将不同的弱分类器组合起来,这种思想就是集成思想。

2、案例分析

举列子:比如比银行借钱,假设想向银行借1000块钱 ,第一次银行借给我们950块钱,与我们想要的差1000-950=50元 ,然后加一颗决策树,让银行再多借30元,这时银行借给我们950+30=980元 ,差1000-980=20元,然后再加一颗决策树,让银行多借15元,与最终目标差5元,即每一次不断拟合残差,达到最后效果。

我们希望每加一个树能够对预测值提升,所以保留之前的预测值,然后再这基础上再加上新的函数来预测,改变预测值,但是新函数的效果必须是朝着提升之前的预测结果目标(即减少误差,使目标函数越来越小)来的,这是xgboost的目标。

为了防止过拟合,我们需要对目标函数加上正则项,在决策树里面,叶子结点越多,越容易过拟合,所以我们需要对叶子节点个数加上正则化,决策越多,加上的惩罚越大,同时我们还要对叶子结点权重加上惩罚项,最终表现形式如下。T代表一棵树。

那么我们如何选择每一轮加入什么f呢?答案是非常直接的,选取一个f来使得我们的目标函数尽量最大地降低、最终损失函数的表示如下。希望在t-1颗树的基础上,新加一个树来优化这一个目标。

目标函数接着转换:

目标函数应用实例:

对于每次扩展,遍历所有的分割方案,选择基尼系数最大的一个分类来扩展。

【机器学习】--xgboost从初识到应用的更多相关文章

  1. 机器学习——XGBoost大杀器,XGBoost模型原理,XGBoost参数含义

    0.随机森林的思考 随机森林的决策树是分别采样建立的,各个决策树之间是相对独立的.那么,在我们得到了第k-1棵决策树之后,能否通过现有的样本和决策树的信息, 对第m颗树的建立产生有益的影响呢?在随机森 ...

  2. 机器学习 xgboost 笔记

    一.数据预处理.特征工程 类别变量 labelencoder就够了,使用onehotencoder反而会降低性能.其他处理方式还有均值编码(对于存在大量分类的特征,通过监督学习,生成数值变量).转换处 ...

  3. 机器学习——XGBoost

    基础概念 XGBoost(eXtreme Gradient Boosting)是GradientBoosting算法的一个优化的版本,针对传统GBDT算法做了很多细节改进,包括损失函数.正则化.切分点 ...

  4. Andrew Ng机器学习第一章——初识机器学习

    机器学习的定义 计算机程序从经验E中学习,解决某一任务T.进行某一性能度量P,通过P测定在T上的表现因E而提高. 简而言之:程序通过多次执行之后获得学习经验,利用这些经验可以使得程序的输出结果更为理想 ...

  5. 机器学习--Xgboost调参

    Xgboost参数 'booster':'gbtree', 'objective': 'multi:softmax', 多分类的问题 'num_class':10, 类别数,与 multisoftma ...

  6. 机器学习xgboost参数解释笔记

    首先xgboost有两种接口,xgboost自带API和Scikit-Learn的API,具体用法有细微的差别但不大. 在运行 XGBoost 之前, 我们必须设置三种类型的参数: (常规参数)gen ...

  7. 图解机器学习 | LightGBM模型详解

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/34 本文地址:http://www.showmeai.tech/article-det ...

  8. 机器学习(四)--- 从gbdt到xgboost

    gbdt(又称Gradient Boosted Decision Tree/Grdient Boosted Regression Tree),是一种迭代的决策树算法,该算法由多个决策树组成.它最早见于 ...

  9. 小巧玲珑:机器学习届快刀XGBoost的介绍和使用

    欢迎大家前往腾讯云技术社区,获取更多腾讯海量技术实践干货哦~ 作者:张萌 序言 XGBoost效率很高,在Kaggle等诸多比赛中使用广泛,并且取得了不少好成绩.为了让公司的算法工程师,可以更加方便的 ...

随机推荐

  1. JSON数据格式转换

    json格式 (JavaScipt Object Notation):是一种数据交换格式!json语法规则:01.对象表现形式 key:value 键值对02.如果有多个数据,之间使用逗号隔开 k1: ...

  2. rename_windows.go

    {         if err != nil {             return err         }         return syscall.EINVAL     }     r ...

  3. bzoj4904 [Ctsc2017]最长上升子序列

    我们发现他让求的东西很奇怪,于是通过某D开头定理,我们转化为前m位的序列用k个不上升子序列最多能覆盖多少.数据范围小的时候可以网络流做,但是这道题显然不支持网络流的复杂度.然后有一个奇怪的东西叫杨氏矩 ...

  4. BZOJ_4590_[Shoi2015]自动刷题机_二分答案

    BZOJ_4590_[Shoi2015]自动刷题机_二分答案 Description 曾经发明了信号增幅仪的发明家SHTSC又公开了他的新发明:自动刷题机--一种可以自动AC题目的神秘装置.自动 刷题 ...

  5. .net中的线程同步基础(搬运自CLR via C#)

    线程安全 此类型的所有公共静态(Visual Basic 中为 Shared)成员对多线程操作而言都是安全的.但不保证任何实例成员是线程安全的. 在MSDN上经常会看到这样一句话.表示如果程序中有n个 ...

  6. Ubuntu 17.10 UTC

    UTC即Universal Time Coordinated,协调世界时(世界统一时间)GMT 即Greenwich Mean Time,格林尼治平时Windows 与 Mac/Linux 看待系统硬 ...

  7. C语言实现十六进制字符串转数字

    代码: int StringToInt(char *hex) { ]) * + CharToInt(hex[]); } int CharToInt(char hex) { ') '; if (hex& ...

  8. 【已解决】通过Package或者Package+Activity启动应用

    有时很烦人,打开要启动的apk,通过adb命令(adb shell "dumpsys activity |grep Focuse") 获取到的应用包名 无法使用adb命令(adb ...

  9. sun.misc.Unsafe 详解

    原文地址 译者:许巧辉 校对:梁海舰 Java是一门安全的编程语言,防止程序员犯很多愚蠢的错误,它们大部分是基于内存管理的.但是,有一种方式可以有意的执行一些不安全.容易犯错的操作,那就是使用Unsa ...

  10. python中报错"json.decoder.JSONDecodeError: Expecting value:"的解决

    在学习python语言中用json库解析网络数据时,我遇到了两个编译错误:json.decoder.JSONDecodeError: Expecting property name enclosed ...