3028: 食物

Time Limit: 3 Sec  Memory Limit: 128 MB
Submit: 497  Solved: 331
[Submit][Status][Discuss]

Description

明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!
我们暂且不讨论他有多么NC,他又幻想了他应该带一些什么东西。理所当然的,你当然要帮他计算携带N件物品的方案数。
他这次又准备带一些受欢迎的食物,如:蜜桃多啦,鸡块啦,承德汉堡等等
当然,他又有一些稀奇古怪的限制:
每种食物的限制如下:
       承德汉堡:偶数个
       可乐:0个或1个
            鸡腿:0个,1个或2个
            蜜桃多:奇数个
            鸡块:4的倍数个
            包子:0个,1个,2个或3个
       土豆片炒肉:不超过一个。
            面包:3的倍数个
 
注意,这里我们懒得考虑明明对于带的食物该怎么搭配着吃,也认为每种食物都是以‘个’为单位(反正是幻想嘛),只要总数加起来是N就算一种方案。因此,对于给出的N,你需要计算出方案数,并对10007取模。

生成函数系数方案数,次数选择个数(不要漏掉不选 x0=1)
每个的生成函数乘起来得到x/(1-x)4
然后广义二项式定理(并不知道该怎么用)....变形x*(1+x+x2+x3+...),n次项系数就是把n个数分成4组每组可以为空,用隔板法,板子和数一起选两个为板子
C(n+3,3)
乘x考虑系数变化,就是n--
[update:2017-05-03]
今天重新想了一下怎么用广义二项式定理做
最后是求$\frac{x}{(1-x)^4}$的n次项系数,就是$(1-x)^{-4}$的n-1次项系数
用广义二项式定理展开,系数就是$\binom{-4}{n}(-x)^n$
n次项系数为 $ \binom{-4}{n} = \frac{ (n+1)(n+2)(n+3) }{3!} $
 
 
  1. #include <iostream>
  2. #include <cstdio>
  3. #include <cstring>
  4. using namespace std;
  5. const int N=,MOD=;
  6. int n,a;
  7. char s[N];
  8. int main(){
  9. scanf("%s",s+);
  10. n=strlen(s+);
  11. for(int i=;i<=n;i++) a=(a*+s[i]-'')%MOD;
  12. printf("%d",a*(a+)%MOD*(a+)%MOD*%MOD);
  13. }
 
 
 
 
 
 

BZOJ 3028: 食物 [生成函数 隔板法 | 广义二项式定理]的更多相关文章

  1. 【bzoj3028】 食物 生成函数+隔板法

    题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3028 这题的推导很妙啊,裸的推母函数的题. 我们首先构造出每种食物的母函数: 汉堡:$ ...

  2. BZOJ 3028 食物 (生成函数+数学题)

    题面:BZOJ传送门 题目让我们求这些物品在合法范围内任意组合,一共组合出$n$个物品的方案数 考虑把每种食物都用生成函数表示出来,然后用多项式乘法把它们乘起来,第$n$项的系数就是方案数 汉堡:$1 ...

  3. BZOJ 3028 食物 生成函数

    Description 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应 该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数.他这 ...

  4. bzoj 3028 食物——生成函数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3028 把式子写出来,化一化,变成 x / ((1-x)^4) ,变成几个 sigma 相乘的 ...

  5. bzoj 3028 食物 —— 生成函数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3028 式子很好推,详细可以看这篇博客:https://blog.csdn.net/wu_to ...

  6. BZOJ 3028 食物 ——生成函数

    把所有东西的生成函数搞出来. 发现结果是x*(1-x)^(-4) 然后把(1-x)^(-4)求逆,得到(1+x+x^2+...)^4 然后考虑次数为n的项前的系数,就相当于选任意四个非负整数构成n的方 ...

  7. bzoj 3028: 食物 生成函数_麦克劳林展开

    不管怎么求似乎都不太好求,我们试试生成函数.这个东西好神奇.生成函数的精华是两个生成函数相乘,对应 $x^{i}$ 前的系数表示取 $i$ 个时的方案数. 有时候,我们会将函数按等比数列求和公式进行压 ...

  8. bzoj 3028: 食物 -- 母函数

    3028: 食物 Time Limit: 3 Sec  Memory Limit: 128 MB Description 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险! 我们暂且不讨论他 ...

  9. bzoj 3028: 食物【生成函数】

    承德汉堡:\( 1+x^2+x^4+...=\frac{1}{1-x^2} \) 可乐:\(1+x \) 鸡腿:\( 1+x+x^2=\frac{x^3-1}{x-1} \) 蜜桃多:\( x+x^3 ...

随机推荐

  1. BZOJ-USACO被虐记

    bzoj上的usaco题目还是很好的(我被虐的很惨. 有必要总结整理一下. 1592: [Usaco2008 Feb]Making the Grade 路面修整 一开始没有想到离散化.然后离散化之后就 ...

  2. 将电脑文件复制到vm虚拟机中,然后安装步骤

    [root@lixiaohu 桌面]# cp openssl-1.0.1f.tar.gz /usr/src     /usr/src  这是复制到的路径[root@lixiaohu 桌面]# cd / ...

  3. SQL的case when then else end语句的用法

    SELECT a.managecom, a.subtype, count(*) loadsucc, sum(case when a.state in  ('4', '5', '6', '7', '8' ...

  4. Docker+Jenkins持续集成环境(4):使用etcd+confd实现容器服务注册与发现

    前面我们已经通过jenkins+docker搭建了基本的持续集成环境,实现了服务的自动构建和部署,但是,我们遇到一个问题,jenkins构建出来的镜像部署后,需要通过ip:port去访问,有什么更好的 ...

  5. Oracle_子查询

    Oracle_子查询 子查询   --如何查得所有比"CLARK"工资高的员工的信息 select ename, sal from emp where ename = 'CLARK ...

  6. Oracle_字段数据类型

    Oracle_字段数据类型 数据库表字段的数据类型 字符数据类型 CHAR:存储固定长度的字符串 VARCHAR2 :存储可变长度的字符串 数值数据类型 NUMBER:存储整数和浮点数,格式为NUMB ...

  7. JAR包介绍大全用途作用详解JAVA

    jta.jar 标准JTA API必要commons-collections.jar 集合类 必要antlr.jar  ANother Tool for Language Recognition 必要 ...

  8. 二叉搜索树的平衡--AVL树和树的旋转(图解)

    二叉搜索树只有保持平衡时其查找效率才会高. 要保持二叉搜索树的平衡不是一件易事.不过还是有一些非常经典的办法可以做到,其中最好的方法就是将二叉搜索树实现为AVL树. AVL树得名于它的发明者 G.M. ...

  9. 推荐一款强大的3D家装开源软件

    2015年家装o2o着实火了一把.家装涉及到上门量尺,再设计,这个过程是免不了的. 目前基于bs架构的酷家乐,爱福窝等,流行起来就是着力于这点,通过一个点寻找突破口,进入深度挖掘,带动其他家具等产品来 ...

  10. pycharm python模版样式

    问题: 我想在创建新的一些python程序的时候,希望在新文件开头添加python版本声明和一些关于时间相关的模版数据 那,如何解决? 1. pycharm ---> setting ---&g ...