3028: 食物

Time Limit: 3 Sec  Memory Limit: 128 MB
Submit: 497  Solved: 331
[Submit][Status][Discuss]

Description

明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!
我们暂且不讨论他有多么NC,他又幻想了他应该带一些什么东西。理所当然的,你当然要帮他计算携带N件物品的方案数。
他这次又准备带一些受欢迎的食物,如:蜜桃多啦,鸡块啦,承德汉堡等等
当然,他又有一些稀奇古怪的限制:
每种食物的限制如下:
       承德汉堡:偶数个
       可乐:0个或1个
            鸡腿:0个,1个或2个
            蜜桃多:奇数个
            鸡块:4的倍数个
            包子:0个,1个,2个或3个
       土豆片炒肉:不超过一个。
            面包:3的倍数个
 
注意,这里我们懒得考虑明明对于带的食物该怎么搭配着吃,也认为每种食物都是以‘个’为单位(反正是幻想嘛),只要总数加起来是N就算一种方案。因此,对于给出的N,你需要计算出方案数,并对10007取模。

生成函数系数方案数,次数选择个数(不要漏掉不选 x0=1)
每个的生成函数乘起来得到x/(1-x)4
然后广义二项式定理(并不知道该怎么用)....变形x*(1+x+x2+x3+...),n次项系数就是把n个数分成4组每组可以为空,用隔板法,板子和数一起选两个为板子
C(n+3,3)
乘x考虑系数变化,就是n--
[update:2017-05-03]
今天重新想了一下怎么用广义二项式定理做
最后是求$\frac{x}{(1-x)^4}$的n次项系数,就是$(1-x)^{-4}$的n-1次项系数
用广义二项式定理展开,系数就是$\binom{-4}{n}(-x)^n$
n次项系数为 $ \binom{-4}{n} = \frac{ (n+1)(n+2)(n+3) }{3!} $
 
 
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int N=,MOD=;
int n,a;
char s[N];
int main(){
scanf("%s",s+);
n=strlen(s+);
for(int i=;i<=n;i++) a=(a*+s[i]-'')%MOD;
printf("%d",a*(a+)%MOD*(a+)%MOD*%MOD);
}
 
 
 
 
 
 

BZOJ 3028: 食物 [生成函数 隔板法 | 广义二项式定理]的更多相关文章

  1. 【bzoj3028】 食物 生成函数+隔板法

    题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3028 这题的推导很妙啊,裸的推母函数的题. 我们首先构造出每种食物的母函数: 汉堡:$ ...

  2. BZOJ 3028 食物 (生成函数+数学题)

    题面:BZOJ传送门 题目让我们求这些物品在合法范围内任意组合,一共组合出$n$个物品的方案数 考虑把每种食物都用生成函数表示出来,然后用多项式乘法把它们乘起来,第$n$项的系数就是方案数 汉堡:$1 ...

  3. BZOJ 3028 食物 生成函数

    Description 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应 该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数.他这 ...

  4. bzoj 3028 食物——生成函数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3028 把式子写出来,化一化,变成 x / ((1-x)^4) ,变成几个 sigma 相乘的 ...

  5. bzoj 3028 食物 —— 生成函数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3028 式子很好推,详细可以看这篇博客:https://blog.csdn.net/wu_to ...

  6. BZOJ 3028 食物 ——生成函数

    把所有东西的生成函数搞出来. 发现结果是x*(1-x)^(-4) 然后把(1-x)^(-4)求逆,得到(1+x+x^2+...)^4 然后考虑次数为n的项前的系数,就相当于选任意四个非负整数构成n的方 ...

  7. bzoj 3028: 食物 生成函数_麦克劳林展开

    不管怎么求似乎都不太好求,我们试试生成函数.这个东西好神奇.生成函数的精华是两个生成函数相乘,对应 $x^{i}$ 前的系数表示取 $i$ 个时的方案数. 有时候,我们会将函数按等比数列求和公式进行压 ...

  8. bzoj 3028: 食物 -- 母函数

    3028: 食物 Time Limit: 3 Sec  Memory Limit: 128 MB Description 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险! 我们暂且不讨论他 ...

  9. bzoj 3028: 食物【生成函数】

    承德汉堡:\( 1+x^2+x^4+...=\frac{1}{1-x^2} \) 可乐:\(1+x \) 鸡腿:\( 1+x+x^2=\frac{x^3-1}{x-1} \) 蜜桃多:\( x+x^3 ...

随机推荐

  1. Centos/Rhel7部署Zabbix监控(部署篇之服务器篇)

    Zabbix是一个基于WEB界面的提供分布式系统监视以及网络监视功能的企业级的开源解决方案. Zabbix能监视各种网络参数,保证服务器系统的安全运营:并提供灵活的通知机制以让系统管理员快速定位/解决 ...

  2. 最新版Sublime Text Build 3156 x64 的下载 + 注册码 + Install Package Control + 汉化教程

    一.Sublime Text  下载 神器 Sublime Text 最近开始更新到开发版本 Build 3156,本身英语不是太6,汉化党自然各种百度汉化教程,网上不是一堆绿色汉化包,就是让你下载汉 ...

  3. Spark算子--coalesce和repartition

    coalesce和repartition--Transformation类算子 代码示例

  4. java 静态导入 小结

    之前看过静态导入这一块,在编程思想里,但是记不清了,今天搜了下,看到有一个博文写的不错,所以留做备注吧 总结: import static xxx.xxx  和普通导入的区别在于,普通导入是需要通过& ...

  5. thinkphp使用PHPMailer发送邮件

    第一步:准备PHPMailer 使用PHPMailer发送邮件,首先下载个PHPMailer 将下载的PHPMailer放到ThinkPHP文件夹里面的ThinkPHPExtendVendor 第二步 ...

  6. Sublime 安装、插件CoolFormat

    http://www.sublimetext.com/3 安装Package Control https://packagecontrol.io/installation#st3 安装插件Cool F ...

  7. Visio绘制用例图问题集锦

    1.Visio画UML用例图没有include关系的解决方法 发现Visio UML用例里面找不到include关系,即"箭头"+"<<include> ...

  8. linux 如何降低入向软中断占比

    最近遇到一个问题,当tcp收包的时候,我们的服务器的入向软中断比例很高. 我们知道,napi模式,可以降低收包入向软中断占比,那么,针对napi模式,能不能优化?本文针对2.6.32-358内核进行分 ...

  9. 网口up不起来问题排查

    最近处理一个问题,发现有的网口up不起来.       ethtool eth6   Settings for eth6:   Supported ports: [ FIBRE ]   Support ...

  10. IronFort---基于Django和Websocket的堡垒机

    WebSSH有很多,基于Django的Web服务也有很多,使用Paramiko在Python中进行SSH访问的就更多了.但是通过gevent将三者结合起来,实现通过浏览器访问的堡垒机就很少见了.本文将 ...