BZOJ 2734: [HNOI2012]集合选数 [DP 状压 转化]
题意:对于任意一个正整数 n≤100000,如何求出{1, 2,..., n} 的满足若 x 在该子集中,则 2x 和 3x 不能在该子集中的子集的个数(只需输出对 1,000,000,001 取模的结果)
好巧妙的转化啊:
构造一个矩阵,把限制关系转化成矩阵的相邻元素不能同时选
1 3 9 27…
2 6 18 54…
4 12 36 108…
然后愉♂悦的状压DP就可以啦
注意每一个既不被$2$又不被$3$整除的数都可以作为矩阵的第一个元素,还有矩阵不一定填满
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=,S=(<<)+,P=1e9+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,f[N][S];
inline void mod(int &x){if(x>=P) x-=P;}
ll ans=;
int col[N];
void dp(int x){
for(int i=x,r=;i<=n;i*=,r++){
int c=;
for(int j=i;j<=n;j*=,c++);
col[r]=<<c;
//printf("col %d %d\n",r,c);
} int r=;
for(int i=x;i<=n;i*=,r++);
//printf("dp %d %d \n",x,r); f[][]=;col[]=;
for(int i=;i<=r;i++)
for(int j=;j<col[i];j++) if( (j&(j<<))== ){
f[i][j]=;
for(int k=;k<col[i-];k++) if( (j&k)== ) mod(f[i][j]+=f[i-][k]);
//printf("f %d %d %d\n",i,j,f[i][j]);
}
int _=;
for(int j=;j<col[r];j++) mod(_+=f[r][j]);
//printf("_ %d\n",_);
ans=ans*_%P;
}
int main(){
freopen("in","r",stdin);
n=read();
for(int i=;i<=n;i++) if(i% && i%) dp(i);
printf("%lld",ans);
}
BZOJ 2734: [HNOI2012]集合选数 [DP 状压 转化]的更多相关文章
- bzoj 2734: [HNOI2012]集合选数 状压DP
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 560 Solved: 321[Submit][Status ...
- BZOJ 2734 洛谷 3226 [HNOI2012]集合选数【状压DP】【思维题】
[题解] 思维题,看了别人的博客才会写. 写出这样的矩阵: 1,3,9,... 2,6,18,... 4,12.36,... 8,24,72,... 我们要做的就是从矩阵中选出一些数字,但是不能选相邻 ...
- BZOJ 2734 [HNOI2012]集合选数 (状压DP、时间复杂度分析)
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2734 题解 嗯早就想写的题,昨天因为某些不可告人的原因(大雾)把这题写了,今天再来写题解 ...
- bzoj 2734: [HNOI2012]集合选数
题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中. 同学们不喜 ...
- 【刷题】BZOJ 2734 [HNOI2012]集合选数
Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...
- [HNOI2012]集合选数(状压DP+构造)
题目要求若出现x,则不能出现2x,3x 所以我们考虑构造一个矩阵 \(1\ 2\ 4 \ 8--\) \(3\ 6\ 12\ 24--\) \(9\ 18\ 36--\) \(--\) 不难发现,对于 ...
- BZOJ3724 [HNOI2012]集合选数 【状压dp】
题目链接 BZOJ3724 题解 构造矩阵的思路真的没想到 选\(x\)就不能选\(2x\)和\(3x\),会发现实际可以转化为矩阵相邻两项 \[\begin{matrix}1 & 3 &am ...
- BZOJ2734 HNOI2012集合选数(状压dp)
完全想不到的第一步是构造一个矩阵,使得每行构成公比为3的等比数列,每列构成公比为2的等比数列.显然矩阵左上角的数决定了这个矩阵,只要其取遍所有既不被2也不被3整除的数那么所得矩阵的并就是所有的数了,并 ...
- bzoj2734:[HNOI2012]集合选数(状压DP)
菜菜的喵喵题~ 化序列为矩阵!化腐朽为神奇!左上角为1,往右每次*3,往下每次*2,这样子就把问题转化成了在矩阵里选不相邻的数有几种可能. 举个矩阵的例子 1 3 9 27 2 6 18 54 4 1 ...
随机推荐
- 使用Redis和jackson操作json中遇到的坑
前言(可以略过) 最近在开发一个智能电表的管理系统,与常规的面向业务的系统不同.智能电表特点是每30分钟会向服务器发一次请求,报道自己目前的电表情况.然后服务器根据电表情况统计此电表的电量使用情况,包 ...
- console.log()的作用是什么
主要是方便你调式javascript用的.你可以看到你在页面中输出的内容. 相比alert他的优点是: 他能看到结构话的东西,如果是alert,淡出一个对象就是[object object],但是co ...
- LAMP与LNMP架构的区别及其具体的选择说明
LAMP==Linux+Apache+Mysql+PHP LNMP==Linux+Nginx+Mysql+PHP 以上两只架构是目前网站的主流架构 LAMP和LNMP最主要的区别在于: 一个使用的是A ...
- tree conflict svn 怎么解决
如果自己和其他人修改了同一个文件,而他已经更新到SVN,你commit时就会出现冲突,如何解决呢? 方法/步骤 使用SVN时,更新一个自己修改的文件到服务器,出现冲突,因为其他同事也修改了这个文件并且 ...
- SQL中MAX()
列column_name中的数据可以是数值.字符串或是日期时间数据类型.
- 数据库连接池(c3p0)
(一)问题的提出: 在使用开发基于数据库的web程序时,传统的数据库使用模式按照以下步骤: 在程序中建立数据库连接 进行sql操作 断开数据库连接 但是,这种模式存在着移动的问题: 传统连接模式每次向 ...
- forward和redirect
Forward和Redirect代表了两种请求转发方式:直接转发和间接转发. 直接转发方式(Forward),客户端和浏览器只发出一次请求,Servlet.HTML.JSP或其它信息资源,由第二个信息 ...
- c#套料程序设计
上的套料基本上都没有源码,开放的sdk都没有,这让很多想做套料,但是又成本太高了. 另外,大部分套料都是c++实现的,效率高,本人尝试用c#做一个套料程序,发现效率也不低,当然会比c++差点. 以下是 ...
- shopnc IM配置过程
im配置windows下,修改chat下和data下的config,安装node,覆盖node下文件即可
- java面向对象的三大特性——多态
多态 所谓多态就是指程序中定义的引用变量所指向的具体类型和通过该引用变量发出的方法调用在编程时并不确定,而是在程序运行期间才确定,即一个引用变量倒底会指向哪个类的实例对象,该引用变量发出的方法调用到底 ...