传送门

题意:对于任意一个正整数 n≤100000,如何求出{1, 2,..., n} 的满足若 x 在该子集中,则 2x 和 3x 不能在该子集中的子集的个数(只需输出对 1,000,000,001 取模的结果)


好巧妙的转化啊:

构造一个矩阵,把限制关系转化成矩阵的相邻元素不能同时选

1 3  9  27…

2 6 18 54…

4 12 36 108…

然后愉♂悦的状压DP就可以啦

注意每一个既不被$2$又不被$3$整除的数都可以作为矩阵的第一个元素,还有矩阵不一定填满

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=,S=(<<)+,P=1e9+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,f[N][S];
inline void mod(int &x){if(x>=P) x-=P;}
ll ans=;
int col[N];
void dp(int x){
for(int i=x,r=;i<=n;i*=,r++){
int c=;
for(int j=i;j<=n;j*=,c++);
col[r]=<<c;
//printf("col %d %d\n",r,c);
} int r=;
for(int i=x;i<=n;i*=,r++);
//printf("dp %d %d \n",x,r); f[][]=;col[]=;
for(int i=;i<=r;i++)
for(int j=;j<col[i];j++) if( (j&(j<<))== ){
f[i][j]=;
for(int k=;k<col[i-];k++) if( (j&k)== ) mod(f[i][j]+=f[i-][k]);
//printf("f %d %d %d\n",i,j,f[i][j]);
}
int _=;
for(int j=;j<col[r];j++) mod(_+=f[r][j]);
//printf("_ %d\n",_);
ans=ans*_%P;
}
int main(){
freopen("in","r",stdin);
n=read();
for(int i=;i<=n;i++) if(i% && i%) dp(i);
printf("%lld",ans);
}

BZOJ 2734: [HNOI2012]集合选数 [DP 状压 转化]的更多相关文章

  1. bzoj 2734: [HNOI2012]集合选数 状压DP

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 321[Submit][Status ...

  2. BZOJ 2734 洛谷 3226 [HNOI2012]集合选数【状压DP】【思维题】

    [题解] 思维题,看了别人的博客才会写. 写出这样的矩阵: 1,3,9,... 2,6,18,... 4,12.36,... 8,24,72,... 我们要做的就是从矩阵中选出一些数字,但是不能选相邻 ...

  3. BZOJ 2734 [HNOI2012]集合选数 (状压DP、时间复杂度分析)

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2734 题解 嗯早就想写的题,昨天因为某些不可告人的原因(大雾)把这题写了,今天再来写题解 ...

  4. bzoj 2734: [HNOI2012]集合选数

    题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中. 同学们不喜 ...

  5. 【刷题】BZOJ 2734 [HNOI2012]集合选数

    Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...

  6. [HNOI2012]集合选数(状压DP+构造)

    题目要求若出现x,则不能出现2x,3x 所以我们考虑构造一个矩阵 \(1\ 2\ 4 \ 8--\) \(3\ 6\ 12\ 24--\) \(9\ 18\ 36--\) \(--\) 不难发现,对于 ...

  7. BZOJ3724 [HNOI2012]集合选数 【状压dp】

    题目链接 BZOJ3724 题解 构造矩阵的思路真的没想到 选\(x\)就不能选\(2x\)和\(3x\),会发现实际可以转化为矩阵相邻两项 \[\begin{matrix}1 & 3 &am ...

  8. BZOJ2734 HNOI2012集合选数(状压dp)

    完全想不到的第一步是构造一个矩阵,使得每行构成公比为3的等比数列,每列构成公比为2的等比数列.显然矩阵左上角的数决定了这个矩阵,只要其取遍所有既不被2也不被3整除的数那么所得矩阵的并就是所有的数了,并 ...

  9. bzoj2734:[HNOI2012]集合选数(状压DP)

    菜菜的喵喵题~ 化序列为矩阵!化腐朽为神奇!左上角为1,往右每次*3,往下每次*2,这样子就把问题转化成了在矩阵里选不相邻的数有几种可能. 举个矩阵的例子 1 3 9 27 2 6 18 54 4 1 ...

随机推荐

  1. 如何使用padlepadle 进行意图识别-开篇

    前言 意图识别是通过分类的办法将句子或者我们常说的query分到相应的意图种类.举一个简单的例子,我想听周杰伦的歌,这个query的意图便是属于音乐意图,我想听郭德纲的相声便是属于电台意图.做好了意图 ...

  2. angular2 Http和websocket

    1. 注入HttpModule模块: 2. 注入http服务 map方法需要导入"rajx/Rx"组件,作用是针对流的处理.Json是将流转化为json格式.subscribe订阅 ...

  3. [国嵌攻略][066][ARP协议实现]

    以太网通讯 在计算机网络中,数据发送的过程就是把数据按照各层协议层层封装的过程.在这个过程中,最终要使用的协议通常是以太网协议(数据链路层协议). 以太网包格式 目的MAC地址:接收者的物理地址(6字 ...

  4. Qt布局操作

    Qt界面布局是用来界面上控件排序的,例如对齐.自适应分辨率等都要用到布局. Qt界面布局跟Visual Studio系列完全不一样,VS系列的操作很简单,一般情况下,很快就能入手了,但比较死板(特别是 ...

  5. removeClass()

    定义和用法 removeClass() 方法从被选元素移除一个或多个类. 注释:如果没有规定参数,则该方法将从被选元素中删除所有类. 语法 $(selector).removeClass(class) ...

  6. OpenCV3.4两种立体匹配算法效果对比

    以OpenCV自带的Aloe图像对为例:     1.BM算法(Block Matching) 参数设置如下: ) + ) & -; cv::Ptr<cv::StereoBM> b ...

  7. 开地址哈希表(Hash Table)的接口定义与实现分析

    开地址哈希函数的接口定义 基本的操作包括:初始化开地址哈希表.销毁开地址哈希表.插入元素.删除元素.查找元素.获取元素个数. 各种操作的定义如下: ohtbl_init int ohtbl_init ...

  8. javascript学习日志:前言

    javascript学习日志系列的所有博客,主要理论依据是<javascript权威指南>(犀牛书第6版)以及<javascript高级程序设计第三版>(红色书),目前js行业 ...

  9. 【原创】区分png图片格式和apng图片格式的解决办法

    最近公司有个项目,要抓取客户微信公众号的文章,以及文章内容中的图片,并且在图片加上客户自己的水印.我们使用阿里云OSS存储图片和加水印,发现真心好用,提升了我们的开发效率,阿里云现在是越来越强大了.. ...

  10. 自定义jstl fn函数fns

    1.引入函数声明: jsp页面需要引入自定义fns函数声明:<%@ taglib prefix="fns" uri="/WEB-INF/tlds/fns.tld&q ...