【keras】用tensorboard监视CNN每一层的输出
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.layers import Conv1D, MaxPooling1D
import scipy.io as sio
import matplotlib.pyplot as plt
from keras.utils import np_utils
import keras
import numpy as np
from keras import regularizers
from keras.callbacks import TensorBoard
from keras.utils import plot_model
from keras import backend as K
from os.path import exists, join from os import makedirs batch_sizes = 256
nb_class = 10
nb_epochs = 2
log_dir = './bgbv2_log_dir' if not exists(log_dir):
makedirs(log_dir) # input image dimensions
img_rows, img_cols = 1, 2048
'''
第一步 准备数据
'''
# matlab文件名 准备数据
file_name = u'G:/GANCode/CSWU/12k drive end vps/trainset/D/D_dataset.mat'
original_data = sio.loadmat(file_name)
X_train = original_data['x_train']
Y_train = original_data['y_train']
X_test = original_data['x_test']
Y_test = original_data['y_test']
channel = 1 X_train = X_train.reshape((X_train.shape[0], X_train.shape[1], channel))
X_test = X_test.reshape((X_test.shape[0], X_test.shape[1], channel))
input_shape = (X_train.shape[1], channel) # 标签打乱
permutation = np.random.permutation(Y_train.shape[0])
X_train = X_train[permutation, :, :]
Y_train = Y_train[permutation] permutation = np.random.permutation(Y_test.shape[0])
X_test = X_test[permutation, :, :]
Y_test = Y_test[permutation] X_train = X_train.astype('float32') # astype SET AS TYPE INTO
X_test = X_test.astype('float32')
#X_train = (X_train+1)/2
#X_test = (X_test+1)/2
print('x_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples') X_meta = X_test.reshape((X_test.shape[0], X_test.shape[1])) kkkkk=0 # save class labels to disk to color data points in TensorBoard accordingly
with open(join(log_dir, 'metadata.tsv'), 'w') as f:
np.savetxt(f, Y_test[:200]) '''
第三步 设置标签 one-hot
'''
Y_test = np_utils.to_categorical(Y_test, nb_class) # Label
Y_train = np_utils.to_categorical(Y_train, nb_class) '''
第四步 网络model
'''
model = Sequential()
model.add(Conv1D(64, 11, activation='relu', input_shape=(2048, 1)))
model.add(Conv1D(64, 11, activation='relu'))
model.add(MaxPooling1D(3))
model.add(Conv1D(128, 11, activation='relu'))
model.add(Conv1D(128, 11, activation='relu')) '''
model.add(GlobalAveragePooling1D())
model.add(Dropout(0.5)) '''
model.add(MaxPooling1D(3))
model.add(Dropout(0.25))
model.add(keras.layers.Flatten())
model.add(Dense(1000, activation='relu'))
model.add(Dense(100, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax')) embedding_layer_names = set(layer.name
for layer in model.layers
if layer.name.startswith('dense_')) # https://stackoverflow.com/questions/45265436/keras-save-image-embedding-of-the-mnist-data-set model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy']) callbacks = [keras.callbacks.TensorBoard(
log_dir='bgbv2_log_dir',
embeddings_layer_names=['dense_2'], #监视某一层,就要写某一层的名字,可以同时监视很多层,用上面的字典形式。
#embeddings_metadata='metadata.tsv',
embeddings_freq=1,
#histogram_freq=1,
embeddings_data=X_test # 数据要和X_train保持一致。这里我用的是一维数据,(60000,2048,1)表示有6万个样本,每个样本有2048个长度,且每个样本有1个通道(1个传感器),换成多个通道的话,就要使用多个传感器的数据。
)] model.fit(X_train, Y_train,
batch_size=batch_sizes,
callbacks=callbacks,
epochs=nb_epochs,
verbose=1,
validation_data=(X_test, Y_test)) xxasfs=1
# You can now launch tensorboard with `tensorboard --logdir=./logs` on your
# command line and then go to http://localhost:6006/#projector to view the
# embeddings
# keras.callbacks.TensorBoard(
# log_dir='./logs',
# histogram_freq=0,
# batch_size=32,
# write_graph=True,
# write_grads=False,
# write_images=False,
# embeddings_freq=0,
# embeddings_layer_names=None,
# embeddings_metadata=None,
# embeddings_data=None,
# update_freq='epoch')
坑死我了。
没有人教,自己琢磨了一天。
下面就能清楚地看见我们的三维图啦~用来写paper和PPT都是极好的素材。
PS:任何一个图层的输出:
https://stackoverflow.com/questions/41711190/keras-how-to-get-the-output-of-each-layer
参考1,keras Tensorboard官方说明
https://keras.io/callbacks/#tensorboard
from __future__ import print_function from os import makedirs
from os.path import exists, join import keras
from keras.callbacks import TensorBoard
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K import numpy as np batch_size = 128
num_classes = 10
epochs = 12
log_dir = './logs' if not exists(log_dir):
makedirs(log_dir) # input image dimensions
img_rows, img_cols = 28, 28 # the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data() if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1) x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples') # save class labels to disk to color data points in TensorBoard accordingly
with open(join(log_dir, 'metadata.tsv'), 'w') as f:
np.savetxt(f, y_test) # convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes) tensorboard = TensorBoard(batch_size=batch_size,
embeddings_freq=1,
embeddings_layer_names=['features'],
embeddings_metadata='metadata.tsv',
embeddings_data=x_test) model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu', name='features'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax')) model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy']) model.fit(x_train, y_train,
batch_size=batch_size,
callbacks=[tensorboard],
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1]) # You can now launch tensorboard with `tensorboard --logdir=./logs` on your
# command line and then go to http://localhost:6006/#projector to view the
# embeddings
参考2,keras Mnist最后一层可视化。
https://keras.io/examples/tensorboard_embeddings_mnist/
参考3,IMDB影视评论最后一层可是化
import keras
from keras import layers
from keras.datasets import imdb
from keras.preprocessing import sequence
max_features = 500 # 原文为2000
max_len = 500
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
x_train = sequence.pad_sequences(x_train, maxlen=max_len)
x_test = sequence.pad_sequences(x_test, maxlen=max_len) KK=x_train[:100].astype("float32")
MM=1 model = keras.models.Sequential()
model.add(layers.Embedding(max_features, 128, input_length=max_len, name='embed'))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.MaxPooling1D(5))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.GlobalMaxPooling1D())
model.add(layers.Dense(1))
model.summary()
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])
callbacks = [keras.callbacks.TensorBoard(
log_dir='my_log_dir',
histogram_freq=1,
embeddings_freq=1,
embeddings_data=x_train[:100].astype("float32")
)]
history = model.fit(x_train, y_train, epochs=20, batch_size=128, validation_split=0.2, callbacks=callbacks) #补充 https://codeday.me/bug/20180924/267508.html
【keras】用tensorboard监视CNN每一层的输出的更多相关文章
- Keras(四)CNN 卷积神经网络 RNN 循环神经网络 原理及实例
CNN 卷积神经网络 卷积 池化 https://www.cnblogs.com/peng8098/p/nlp_16.html 中有介绍 以数据集MNIST构建一个卷积神经网路 from keras. ...
- keras与tensorboard结合使用
使用tensorboard将keras的训练过程显示出来(动态的.直观的)是一个绝好的主意,特别是在有架设好的VPS的基础上,这篇文章就是一起来实现这个过程. 一.主要原理 keras的在训练(fit ...
- 【Keras案例学习】 CNN做手写字符分类(mnist_cnn )
from __future__ import print_function import numpy as np np.random.seed(1337) from keras.datasets im ...
- fasttext和cnn的比较,使用keras imdb看效果——cnn要慢10倍。
fasttext: '''This example demonstrates the use of fasttext for text classification Based on Joulin e ...
- CNN中下一层Feature map大小计算
符号表示: $W$:表示当前层Feature map的大小. $K$:表示kernel的大小. $S$:表示Stride的大小. 具体来讲: 整体说来,和下一层Feature map大小最为密切的就是 ...
- keras启用tensorboard
在callback函数中添加tensorboard,启用tensorboard. # TensorBoard callback tensorboard_cb = K.callbacks.TensorB ...
- Keras框架下使用CNN进行CIFAR-10的识别测试
有手册,然后代码不知道看一下:https://keras-cn.readthedocs.io/en/latest/ 首先是下载数据集,下载太慢了就从网盘上下载: 链接:https://pan.baid ...
- pytorch 中LSTM模型获取最后一层的输出结果,单向或双向
单向LSTM import torch.nn as nn import torch seq_len = 20 batch_size = 64 embedding_dim = 100 num_embed ...
- caffe网络中屏蔽某一层的输出Silence层
屏蔽label输出 layer { name: "silence0" type: "Silence" bottom: "label" pha ...
随机推荐
- SpringBoot整合Swagger2,再也不用维护接口文档了!
前后端分离后,维护接口文档基本上是必不可少的工作.一个理想的状态是设计好后,接口文档发给前端和后端,大伙按照既定的规则各自开发,开发好了对接上了就可以上线了.当然这是一种非常理想的状态,实际开发中却很 ...
- RecyclerViewSelectableAdapterDemo【封装BaseSelectableAdapter用于多选、单选,以及切换选中状态等功能】
版权声明:本文为HaiyuKing原创文章,转载请注明出处! 前言 记录封装单选.多选.切换选中状态的BaseSelectableAdapter基类,配合Recyclerview使用. 注意:此Dem ...
- Solr 15 - Solr添加和更新索引的过程 (文档的路由细节)
目录 1 添加文档的细节 1.1 注册观察者 - watcher 1.2 文档的路由 - document route 1.2.1 路由算法 1.2.2 Solr路由的实现类 1.2.3 implic ...
- jquery快速入门(四)
jQuery 遍历 向上遍历 DOM 树 parent() parent() 方法返回被选元素的直接父元素.该方法只会向上一级对 DOM 树进行遍历. parents() parents() 方法返回 ...
- 每周分享五个 PyCharm 使用技巧(一)
PyCharm 是大多数 Python 开发者的首选 IDE,每天我们都在上面敲着熟悉的代码,写出一个又一个奇妙的功能. 一个每天都在使用的工具,如果能掌握一些高效的使用技巧,肯定会给我们的开发效率带 ...
- pytorch深度学习60分钟闪电战
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html 官方推荐的一篇教程 Tensors #Construct a ...
- C#/VB.NET设置Excel表格背景色
在查看很多有复杂的数据的表格时,为了能够快速地找到所需要的数据组时,往往需要对该数据组进行分类,一个简单快速的方法就是对数据组所在的单元格填充背景颜色,这样就使得我们在阅读文件时能够直观的看到数据分类 ...
- spring2.0 mybatis JDBC配置
mybatis 搭建 <!--连接池--> <dependency> <groupId>org.springframework.boot</groupId&g ...
- Dubbo和Spring Cloud微服务架构'
微服务架构是互联网很热门的话题,是互联网技术发展的必然结果.它提倡将单一应用程序划分成一组小的服务,服务之间互相协调.互相配合,为用户提供最终价值.虽然微服务架构没有公认的技术标准和规范或者草案,但业 ...
- git status 显示中文乱码
场景 在使用git命令行查看当前 状态时, git status 显示中文文件乱码: 解决 修改git配置, git config --global core.quotepath false