Description

你有n个物品和m个包。物品有重量,且不可被分割;包也有各自的容量。要把所有物品装入包中,至少需要几个包?

Input

第一行两个整数n,m(1<=n<=24,1<=m<=100),表示物品和包的数量。
第二行有n个整数a[1],a[2],…,a[n](1<=a[i]<=10^8),分别表示物品的重量。
第三行有m个整数c[1],c[2],…,c[m](1<=c[i]<=10^8),分别表示包的容量。

Output

如果能够装下,输出一个整数表示最少使用包的数目。若不能全部装下,则输出NIE。

Sample Input

4 3
4 2 10 3
11 18 9

Sample Output

2

题解

狗屎因为数组开小了,导致调了一个多小时...

首先我们有贪心的思想就是背包肯定是从大往小选。

再接着由于物品数$n<=24$,我们可以拿来状压。

设$f[S]$表示当前物品集合为$S$,且当前背包所用容量为$f[S]$,$g[S]$为当前背包的编号,也就是背包数量。

那么每次我们可以枚举一个物品加进来,如果没有炸掉当前背包,就可以直接填进去,否则就要开一个新背包,如果连新背包都开不下,那么这个转移就是不合法的。(参考wfj_2048

 //It is made by Awson on 2017.10.15
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define sqr(x) ((x)*(x))
#define lowbit(x) ((-(x))&(x))
using namespace std;
const int N = <<;
const int INF = ~0u>>;
void read(int &x) {
char ch; bool flag = ;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || ); ch = getchar());
for (x = ; isdigit(ch); x = (x<<)+(x<<)+ch-, ch = getchar());
x *= -*flag;
} int n, m, st[N+];
int a[], c[];
int f[N+], g[N+]; bool comp(const int &q, const int &p) {
return q > p;
} void work() {
read(n), read(m);
memset(f, -, sizeof(f));
for (int i = ; i < n; i++) read(a[i]), st[<<i] = i;
for (int i = ; i <= m; i++) read(c[i]); sort(c+, c+m+, comp);
for (int i = ; i < n; i++) if (a[i] <= c[]) f[<<i] = c[]-a[i], g[<<i] = ;
for (int i = , lim = <<n; i < lim; i++) {
if (f[i] == -) f[i] = g[i] = INF;
for (int t = i, j = i-lowbit(t); t && j; t -= lowbit(t), j = i-lowbit(t)) {
if (f[j] == INF) continue;
int bit = st[lowbit(t)];
int ff, gg;
if (f[j] >= a[bit]) ff = f[j]-a[bit], gg = g[j];
else ff = c[g[j]+]-a[bit], gg = g[j]+;
if (ff < ) continue;
if (gg < g[i]) f[i] = ff, g[i] = gg;
else if (gg == g[i] && f[i] < ff) f[i] = ff;
}
}
if (f[(<<n)-] == INF || g[(<<n)-] > m) printf("NIE\n");
else printf("%d\n", g[(<<n)-]);
}
int main() {
work();
return ;
}

[PA 2014]Pakowanie的更多相关文章

  1. [PA 2014]Lustra

    Description Byteasar公司专门外包生产带有镜子的衣柜.刚刚举行的招标会上,有n个工厂参加竞标.所有镜子都是长方形的,每个工厂能够制造的镜子都有其各自的最大.最小宽度和最大.最小高度. ...

  2. [PA 2014]Kuglarz

    Description 魔术师的桌子上有n个杯子排成一行,编号为1,2,…,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯子,你就可以获得奖品.花费c_ij元,魔术师就会告诉你杯子i,i+ ...

  3. [PA 2014]Bohater

    Description 在一款电脑游戏中,你需要打败n只怪物(从1到n编号).为了打败第i只怪物,你需要消耗d[i]点生命值,但怪物死后会掉落血药,使你恢复a[i]点生命值.任何时候你的生命值都不能降 ...

  4. [PA 2014]Iloczyn

    Description 斐波那契数列的定义为:k=0或1时,F[k]=k:k>1时,F[k]=F[k-1]+F[k-2].数列的开头几项为0,1,1,2,3,5,8,13,21,34,55,…你 ...

  5. 解题:PA 2014 Bohater

    题面 我们把怪分成两类,打完了了能回血的和打完了不能回血的,然后分开打. 对于能回血的,我们先打攻击力低的,因为如果先打一个攻击力高的显然不一定能直接打过,所以先打一些攻击力低的回回血. 对于不能回血 ...

  6. bzoj 3714 [ PA 2014 ] Kuglarz —— 思路+最小生成树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3714 因为每个杯子下最多一个小球,所以从奇偶性就可以看出有没有球: 询问一段区间,等于知道一 ...

  7. 【PA 2014】Kuglarz

    [题目链接]            点击打开链接 [算法]            sum[i]表示前i个杯子中,杯子底下藏有球的杯子总数            那么,知道[i,j]这段区间中,藏有球的 ...

  8. 2014年第五届蓝桥杯C/C++程序设计本科B组决赛

    1.年龄巧合(枚举) 2.出栈次序(推公式/Catalan数) 3.信号匹配(kmp) 4.生物芯片(完全平方数) 5.Log大侠(线段树) 6.殖民地 1.年龄巧合 小明和他的表弟一起去看电影,有人 ...

  9. PA模块报错-实际返回的行数超出请求的行数(分析标准FORM报错解决思路)

    录入预算报错时报错: 分析:这个错误是select into 语句返回多行的结果,但具体在哪? 两种方法查找,trace 或者debug 1.trace 启用调试 获取trace文件 -bash-3. ...

随机推荐

  1. pjax实例demo(c#,iis)

    pjax 百度都是api 也没找到demo 自己写了一个 C#写的 需要iis架设 测试ie10 和 火狐 成功 ie10不要用兼容模式 不然不好使 iis 可以直接架设webDemo1文件夹(源码) ...

  2. io多路复用(一)

    sever端 1 import socket sk1 = socket.socket() sk1.bind(('127.0.0.1',8001,)) sk1.listen() sk2 = socket ...

  3. [ZLXOI2015]殉国

    2057. [ZLXOI2015]殉国 http://cogs.pro/cogs/problem/problem.php?pid=2057 ★☆   输入文件:BlackHawk.in   输出文件: ...

  4. datable转xml

    /// <summary> /// datatable转换xml /// </summary> /// <param name="xmlDS"> ...

  5. Mego开发文档 - 快速开始

    Mego 快速开始 我们将创建一个简单的数据新增及查询来演示 Mego 的使用过程.演示中都是使用 Visual Studio 2017 作为开发工具,SQL Server 2012 作为数据库. 创 ...

  6. spring2——IOC之Bean的装配

    spring容器对于bean的装配提供了两个接口容器分别是"ApplicationContext接口容器"和"BeanFactory接口容器",其中" ...

  7. Python之函数基础

    1.函数的定义与调用 函数从大方针上考虑总共分为两种:一种是内置函数,另一种是自定义函数.今天主要讲的是自定义函数. s = '金老板小护士' #len(s) def my_len(): #自定义函数 ...

  8. RxJava系列6(从微观角度解读RxJava源码)

    RxJava系列1(简介) RxJava系列2(基本概念及使用介绍) RxJava系列3(转换操作符) RxJava系列4(过滤操作符) RxJava系列5(组合操作符) RxJava系列6(从微观角 ...

  9. logback中appender继承

    实例: <?xml version="1.0" encoding="UTF-8"?> <configuration debug="t ...

  10. python 异常 反射

    异常 反射 一.异常处理: AttributeError 试图访问一个对象没有的树形,比如foo.x,但是foo没有属性x IOError 输入/输出异常:基本上是无法打开文件 ImportError ...