BZOJ_2738_矩阵乘法_整体二分

Description

  给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数。

Input

  第一行两个数N,Q,表示矩阵大小和询问组数;
  接下来N行N列一共N*N个数,表示这个矩阵;
  再接下来Q行每行5个数描述一个询问:x1,y1,x2,y2,k表示找到以(x1,y1)为左上角、以(x2,y2)为右下角的子矩形中的第K小数。

Output

  对于每组询问输出第K小的数。

Sample Input

2 2
2 1
3 4
1 2 1 2 1
1 1 2 2 3

Sample Output

1
3

HINT

  矩阵中数字是109以内的非负整数;
  20%的数据:N<=100,Q<=1000;
  40%的数据:N<=300,Q<=10000;
  60%的数据:N<=400,Q<=30000;
  100%的数据:N<=500,Q<=60000。


可以离线,把权值排序。

solve(b,e,l,r)表示b到e的询问的答案在l到r范围的权值内。

答案mid,就插入前mid个数,然后查询区间有多少个数,可以用二维树状数组维护。

答案在左边就往左走,在右边就减去左边的贡献往右走。

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 60050
int n,c[550][550],L[N],R[N],mid[N],ans[N];
struct A {
int v,x,y;
}a[550*550];
struct Q {
int d,f,g,h,k,id;
}q[N],t[N];
bool cmp(const A &a,const A &b) {
return a.v<b.v;
}
void fix(int x,int y,int v) {
int i,j;
for(i=x;i<=n;i+=i&(-i)) {
for(j=y;j<=n;j+=j&(-j)) {
c[i][j]+=v;
}
}
}
int inq(int x,int y) {
int i,j,re=0;
for(i=x;i;i-=i&(-i)) {
for(j=y;j;j-=j&(-j)) {
re+=c[i][j];
}
}
return re;
}
int query(int x,int y,int x2,int y2) {
x--; y--;
return inq(x2,y2)-inq(x,y2)-inq(x2,y)+inq(x,y);
}
void solve(int b,int e,int l,int r) {
int i;
if(b>e) return ;
if(l==r) {
for(i=b;i<=e;i++) {
ans[q[i].id]=a[l].v;
}
return ;
}
int mid=(l+r)>>1,lpos=b,rpos=e;
for(i=l;i<=mid;i++) {
fix(a[i].x,a[i].y,1);
}
for(i=b;i<=e;i++) {
int sizls=query(q[i].d,q[i].f,q[i].g,q[i].h);
if(sizls>=q[i].k) t[lpos++]=q[i];
else q[i].k-=sizls,t[rpos--]=q[i];
}
for(i=b;i<=e;i++) q[i]=t[i];
for(i=l;i<=mid;i++) {
fix(a[i].x,a[i].y,-1);
}
solve(b,lpos-1,l,mid);
solve(rpos+1,e,mid+1,r);
}
int main() {
int m;
scanf("%d%d",&n,&m);
int i,tot=0,j;
for(i=1;i<=n;i++) {
for(j=1;j<=n;j++) {
scanf("%d",&a[++tot].v);
a[tot].x=i; a[tot].y=j;
}
}
sort(a+1,a+n*n+1,cmp);
for(i=1;i<=m;i++) {
scanf("%d%d%d%d%d",&q[i].d,&q[i].f,&q[i].g,&q[i].h,&q[i].k);
q[i].id=i;
}
solve(1,m,1,n*n);
for(i=1;i<=m;i++) printf("%d\n",ans[i]);
}

BZOJ_2738_矩阵乘法_整体二分的更多相关文章

  1. [bzoj2738]矩阵乘法_整体二分_树状数组

    矩阵乘法 bzoj-2738 题目大意:给定一个$n*n$的矩阵.每次给定一个矩阵求矩阵$k$小值. 注释:$1\le n\le 500$,$1\le q\le 6\cdot 10^4$. 想法: 新 ...

  2. BZOJ2738 矩阵乘法 【整体二分 + BIT】

    题目链接 BZOJ2738 题解 将矩阵中的位置取出来按权值排序 直接整体二分 + 二维BIT即可 #include<algorithm> #include<iostream> ...

  3. BZOJ 2738 矩阵乘法(整体二分+二维树状数组)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2738 [题目大意] 给出一个方格图,询问要求求出矩阵内第k小的元素 [题解] 我们对答 ...

  4. BZOJ2738 矩阵乘法(整体二分+树状数组)

    单个询问二分答案即可,多组询问直接整体二分再二维BIT.注意保证复杂度. #include<iostream> #include<cstdio> #include<cma ...

  5. [BZOJ2738]矩阵乘法(整体二分+二维树状数组)

    整体二分+二维树状数组. 好题啊!写了一个来小时. 一看这道题,主席树不会搞,只能用离线的做法了. 整体二分真是个好东西,啥都可以搞,尤其是区间第 \(k\) 大这种东西. 我们二分答案,然后用二维树 ...

  6. bzoj 2738: 矩阵乘法【整体二分+树状数组】

    脑子一抽开始写主席树,敲了一会发现不对-- 整体二分,用二维树状数组维护值为当前区间的格子个数,然后根据k的大小和当前询问的子矩阵里的值和k的大小关系来决定这个询问放在哪一部分向下递归 #includ ...

  7. P1527 [国家集训队]矩阵乘法(整体二分)

    Link 整体二分的经典例题. 对于整体二分,我个人的理解是二分答案套分治. 具体来说就是对答案进行二分,然后对于询问进行类似于权值线段树求区间第 \(k\) 大的分治做法. 首先,我们暴力做法就是对 ...

  8. Tsinsen A1333: 矩阵乘法(整体二分)

    http://www.tsinsen.com/A1333 题意:-- 思路:和之前的第k小几乎一样,只不过把一维BIT换成二维BIT而已.注意二维BIT写法QAQ #include <cstdi ...

  9. BZOJ_3110_[Zjoi2013]K大数查询_整体二分+树状数组

    BZOJ_3110_[Zjoi2013]K大数查询_整体二分+树状数组 Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位 ...

随机推荐

  1. 新手入门vue 使用vue-cli创建项目

    本文是针对对于完全没有了解过vue 和npm,连运行环境和项目构建的都不会的小白,对于前端老司机的就不用看了,浪费时间. 使用npm 与vue-cli 构建vue 项目 第一步:安装运行环境(node ...

  2. Mego(04) - NET简单实现EXCEL导入导出

    前言 相信做过信息系统的朋友都会遇到EXCEL导入导出的相关开发,做过不少EXCEL导入导出后总结起来大致有如下几种方式实现: ADO.NET的OldDb或ODBC连接EXCEL使用DataTable ...

  3. winform 写App.config配置文件——IT轮子系列(八)

    前言 在winform项目中,常常需要读app.config文件.如: var version = System.Configuration.ConfigurationManager.AppSetti ...

  4. subsets(子集)

    Given a set of distinct integers, nums, return all possible subsets (the power set). Note: The solut ...

  5. 一个基础的for循环面试题

    下面的这段程序主要考察的就是for循环的基础,输出什么?????? [html] view plaincopyprint? public class test { /** * @param args ...

  6. 6.4 Schema 设计对系统的性能影响

    前面两节中,我们已经分析了在一个数据库应用系统的软环境中应用系统的架构实现和系统中与数据库交互的SQL 语句对系统性能的影响.在这一节我们再分析一下系统的数据模型设计实现对系统的性能影响,更通俗一点就 ...

  7. Day8 封装 静态属性property

    封装:将类的属性隐藏 #先看如何隐藏 1,在定义的属性之前加入__. class Foo: __N=111111 #_Foo__N def __init__(self,name): self.__Na ...

  8. Java 中遇到null 和为空的情况,使用Optional来解决。

    Java 中遇到null 和为空的情况,使用Optional来解决 示例代码: package crazy; import java.util.Optional; class Company { pr ...

  9. Django Channels简明实践

    1.安装,如果你已经安装django1.9+,那就不要用官方文档的安装指令了,把-U去掉,直接用: sudo pip install channels 2.自定义的普通Channel的名称只能包含a- ...

  10. Niop2017初赛滚粗记

    初赛踢蹬滚粗 TOT (╯°Д°)╯︵┻━┻ ヽ(`Д´)ノ︵ ┻━┻ ┻━┻ 排序啊排序,净是排序,自打我学了C++就再没学过排序!!wtf! (╯°Д°)╯︵ /(.□ . )我tm怎么知道建国那 ...