POJ_2318_TOYS&&POJ_2398_Toy Storage_二分+判断直线和点的位置

Description

Calculate the number of toys that land in each bin of a partitioned toy box.
Mom and dad have a problem - their child John never puts his toys
away when he is finished playing with them. They gave John a rectangular
box to put his toys in, but John is rebellious and obeys his parents by
simply throwing his toys into the box. All the toys get mixed up, and
it is impossible for John to find his favorite toys.

John's parents came up with the following idea. They put cardboard
partitions into the box. Even if John keeps throwing his toys into the
box, at least toys that get thrown into different bins stay separated.
The following diagram shows a top view of an example toy box.



For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.

Input

The
input file contains one or more problems. The first line of a problem
consists of six integers, n m x1 y1 x2 y2. The number of cardboard
partitions is n (0 < n <= 5000) and the number of toys is m (0
< m <= 5000). The coordinates of the upper-left corner and the
lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The
following n lines contain two integers per line, Ui Li, indicating that
the ends of the i-th cardboard partition is at the coordinates (Ui,y1)
and (Li,y2). You may assume that the cardboard partitions do not
intersect each other and that they are specified in sorted order from
left to right. The next m lines contain two integers per line, Xj Yj
specifying where the j-th toy has landed in the box. The order of the
toy locations is random. You may assume that no toy will land exactly on
a cardboard partition or outside the boundary of the box. The input is
terminated by a line consisting of a single 0.

Output

The
output for each problem will be one line for each separate bin in the
toy box. For each bin, print its bin number, followed by a colon and one
space, followed by the number of toys thrown into that bin. Bins are
numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate
the output of different problems by a single blank line.

Sample Input

5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0

Sample Output

0: 2
1: 1
2: 1
3: 1
4: 0
5: 1 0: 2
1: 2
2: 2
3: 2
4: 2

2318:对于每个玩具,二分查找一下,判断这个点在直线的左边还是右边,判断叉积的正负即可。
2398:同理,只需要对点排个序。 代码(2318):
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef double f2;
#define N 5050
#define eps 1e-6
int n,m,x_1,x_2,y_1,y_2,x_t,y_t;
int u[N],l[N],L,R,ans[N];
struct Point {
f2 x,y;
Point() {}
Point(f2 x_,f2 y_) :
x(x_),y(y_) {}
Point operator + (const Point &p) {return Point(x+p.x,y+p.y);}
Point operator - (const Point &p) {return Point(x-p.x,y-p.y);}
Point operator * (f2 rate) {return Point(x*rate,y*rate);}
};
f2 dot(const Point &p1,const Point &p2) {return p1.x*p2.x+p1.y*p2.y;}
f2 cross(const Point &p1,const Point &p2) {return p1.x*p2.y-p1.y*p2.x;}
bool check(int x) {
Point A=Point(u[x]-l[x],y_1-y_2);
Point B=Point(u[x]-x_t,y_1-y_t);
return cross(B,A)>-eps;
}
void init() {
memset(ans,0,sizeof(ans));
}
int main() {
while(1) {
scanf("%d",&n);
if(!n) return 0;
init();
scanf("%d%d%d%d%d",&m,&x_1,&y_1,&x_2,&y_2);
u[0]=0; l[0]=0;
int i;
for(i=1;i<=n;i++) {
scanf("%d%d",&u[i],&l[i]);
}
for(i=1;i<=m;i++) {
scanf("%d%d",&x_t,&y_t);
L=0; R=n+1;
while(L<R) {
int mid=(L+R)>>1;
if(check(mid)) R=mid;
else L=mid+1;
}
ans[L-1]++;
}
for(i=0;i<=n;i++) {
printf("%d: %d\n",i,ans[i]);
}
puts("");
}
}

代码(2318):

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef double f2;
#define N 5050
#define eps 1e-6
int n,m,x_1,x_2,y_1,y_2,x_t,y_t;
int u[N],l[N],L,R,ans[N],cnt[N];
struct Point {
f2 x,y;
Point() {}
Point(f2 x_,f2 y_) :
x(x_),y(y_) {}
Point operator + (const Point &p) {return Point(x+p.x,y+p.y);}
Point operator - (const Point &p) {return Point(x-p.x,y-p.y);}
Point operator * (f2 rate) {return Point(x*rate,y*rate);}
};
f2 dot(const Point &p1,const Point &p2) {return p1.x*p2.x+p1.y*p2.y;}
f2 cross(const Point &p1,const Point &p2) {return p1.x*p2.y-p1.y*p2.x;}
bool check(int x) {
Point A=Point(u[x]-l[x],y_1-y_2);
Point B=Point(u[x]-x_t,y_1-y_t);
return cross(B,A)>-eps;
}
void init() {
memset(ans,0,sizeof(ans));
memset(cnt,0,sizeof(cnt));
}
int main() {
while(1) {
scanf("%d",&n);
if(!n) return 0;
init();
scanf("%d%d%d%d%d",&m,&x_1,&y_1,&x_2,&y_2);
u[0]=0; l[0]=0;
int i;
for(i=1;i<=n;i++) {
scanf("%d%d",&u[i],&l[i]);
}
sort(u+1,u+n+1);
sort(l+1,l+n+1);
ans[0]=n+1;
for(i=1;i<=m;i++) {
scanf("%d%d",&x_t,&y_t);
L=0; R=n+1;
while(L<R) {
int mid=(L+R)>>1;
if(check(mid)) R=mid;
else L=mid+1;
}
ans[cnt[L-1]]--;
cnt[L-1]++;
ans[cnt[L-1]]++;
}
puts("Box");
for(i=1;i<=m;i++) {
if(ans[i])
printf("%d: %d\n",i,ans[i]);
}
}
}

POJ_2318_TOYS&&POJ_2398_Toy Storage_二分+判断直线和点的位置关系的更多相关文章

  1. Segments---poj3304(判断直线与线段的位置关系)

    题目链接:http://poj.org/problem?id=3304 题意:给你n个线段,求是否有一条直线与所有的线段都相交,有Yes,没有No; 枚举所有的顶点作为直线的两点,然后判断这条直线是否 ...

  2. 叉积_判断点与三角形的位置关系 P1355 神秘大三角

    题目描述 判断一个点与已知三角形的位置关系. 输入输出格式 输入格式: 前三行:每行一个坐标,表示该三角形的三个顶点 第四行:一个点的坐标,试判断该点与前三个点围成三角形的位置关系 (详见样例) 所有 ...

  3. Cupid's Arrow---hdu1756(判断点与多边形的位置关系 模板)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1756 题意:中文题,套模板即可: /* 射线法:判断一个点是在多边形内部,边上还是在外部,时间复杂度为 ...

  4. LightOj1190 - Sleepwalking(判断点与多边形的位置关系--射线法模板)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1190 题意:给你一个多边形含有n个点:然后又m个查询,每次判断点(x, y)是否在多边 ...

  5. [poj2318]TOYS(直线与点的位置关系)

    解题关键:计算几何入门题,通过叉积判断. 两个向量的关系: P*Q>0,Q在P的逆时针方向: P*Q<0,Q在P的顺时针方向: P*Q==0,Q与P共线. 实际就是用右手定则判断的. #i ...

  6. luogu 1355 神秘大三角 判断点和三角形的位置关系 面积法 叉积法

    题目链接 题目描述 判断一个点与已知三角形的位置关系. 输入输出格式 输入格式: 前三行:每行一个坐标,表示该三角形的三个顶点 第四行:一个点的坐标,试判断该点与前三个点围成三角形的位置关系 (详见样 ...

  7. Segments--poj3304(判断直线与线段之间的关系)

    http://poj.org/problem?id=3304 给你几条线段  然后 让你找到一条直线让他在这条直线上的映射有一个重合点 如果有这条直线的话  这个重合的部分的两个端点一定是某两条线段的 ...

  8. [fzu 2273]判断两个三角形的位置关系

    首先判断是否相交,就是枚举3*3对边的相交关系. 如果不相交,判断包含还是相离,就是判断点在三角形内还是三角形外.两边各判断一次. //http://acm.fzu.edu.cn/problem.ph ...

  9. 判断两条直线的位置关系 POJ 1269 Intersecting Lines

    两条直线可能有三种关系:1.共线     2.平行(不包括共线)    3.相交. 那给定两条直线怎么判断他们的位置关系呢.还是用到向量的叉积 例题:POJ 1269 题意:这道题是给定四个点p1, ...

随机推荐

  1. vue中get和post请求

    import axios from 'axios'; import router from '@/router'; import {     setSessionStorage,     getSes ...

  2. unity零基础开始学习做游戏(四)biu~biu~biu发射子弹打飞机

    -------小基原创,转载请给我一个面子 主角都能移动了,那不得做点什么伸张正义,守护世界和平的事嘛,拿起家伙biu~biu~biu~ 首先得做一个好人和一个坏人 老规矩,Canvas下创建两个Im ...

  3. Linux基础命令归纳大全

    Linux发行版本:基于linux内核提供桌面环境及办公套件的操作系统 (Linux内核只有一个)   1. 启动终端的快捷键: ctr + alt + t 2. 终端字体放大: ctr+shift+ ...

  4. 2018 CISCN reverse wp

    2018 CISCN reverse wp 这题比赛的时候没做出来,主要是心态崩了看不下去..赛后看了下网上的wp发现不难,是自己想复杂了.这里将我的思路和exp放出来,希望大家一起交流学习. mai ...

  5. maven包加载

    1) IDEA包加载pom.xml配置 <build>    <sourceDirectory>src/main/java</sourceDirectory>    ...

  6. Flask入门之Bootstrap介绍使用和Flask-Nav快速导航栏

    一.Bootstrap Bootstrap,来自 Twitter,是目前最受欢迎的前端框架. Python中,同样可以使用Bootstrap. 1. 导入Bootstrap库 from flask_b ...

  7. NoHttp封装--03 缓存

    1.Default模式,也是没有设置缓存模式时的默认模式 这个模式实现http协议中的内容,比如响应码是304时,当然还会结合E-Tag和LastModify等头. StringRequest req ...

  8. .NET开发微信小程序-微信支付

    前台MD5加密代码 /* * A JavaScript implementation of the RSA Data Security, Inc. MD5 Message * Digest Algor ...

  9. TCP连接和 time_wait、close_waite

    TCP连接和 time_wait.close_waite tags:time_wait close_waite RST TCP 引言:前两天朋友公司的服务器垮掉了,最后查出的原因是发现大量的time_ ...

  10. mysql workbench EER图,里面的实线以及虚线的关系

    ERWin里面线代表实体间的三种关系:决定关系(Identifying Relationship),非决定关系(None-Identifying Relationship),多对多(Many-To-M ...