不论是18版,还是37版,一开始都会从TCP的控制块中取出SACK选项的起始地址。

SACK选项的起始地址是保存在tcp_skb_cb结构的sacked项中的,那么这是在什么时候做的呢?

SACK块并不是总是合法的,非法的SACK块可能会引起处理错误,所以还需要进行SACK块的合法性检查。

本文主要内容:TCP首部中SACK选项的解析和地址的获取,SACK块的合法性检查。

Author:zhangskd @ csdn

SACK选项的地址

TCP_SKB_CB(skb)->sacked is initialized to offset corresponding to the start of the SACK option in the

TCP header for the segment received.

处理时机为:

tcp_rcv_established(),进入慢速路径时调用

| --> tcp_validate_incoming()

| --> tcp_fast_parse_options()

| --> tcp_parse_options()

在慢速路径中,有可能只带有TIMESTAMP选项,因此先用tcp_fast_parse_options()快速解析。

/* Fast parse options. This hopes to only see timestamps.
* If it is wrong it falls back on tcp_parse_options().
*/
static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, struct tcp_sock *tp, u8 **hvpp)
{
/* In the spirit of fast parsing, compare doff directly to constant values.
* Because equality is used, short doff can be ignored here.
*/
if (th->doff == (sizeof(*th) / 4)) { /* 没有带选项 */
tp->rx_opt.saw_tstamp = 0;
return 0; } else if (tp->rx_opt.tstamp_ok &&
th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { /* 只带有时间戳选项 */
if (tcp_parse_aligned_timestamp(tp, th))
return 1;
} /* 如果以上的快速解析失败,则进行全面解析 */
tcp_parse_options(skb, &tp->rx_opt, hvpp, 1); return 1;
}
static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
{
__be32 *ptr = (__be32 *) (th + 1); /* 指向选项部分 */ /* 如果选项部分的前4个字节分别为:0x 01 01 08 0A */
if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
| (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { tp->rx_opt.saw_tstamp = 1;
++ptr; tp->rx_opt.rcv_tsval = ntohl(*ptr); /* 提取接收包的时间戳*/
++ptr; tp->rx_opt.rcv_tsecr = ntohl(*ptr); /* 提取接收包的回显值*/
return 1;
} return 0;
}

在慢速路径中,如果tcp_fast_parse_options()失败,则调用tcp_parse_options()全面解析TCP选项。

/* Look for tcp options. Normally only called on SYN and SYNACK packets.
* But, this can also be called on packets in the established flow when the fast version
* below fails.
*/
void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, u8 **hvpp, int estab)
{
unsigned char *ptr;
struct tcphdr *th = tcp_hdr(skb);
int length = (th->doff * 4) - sizeof(struct tcphdr); /* 选项总长度 */ ptr = (unsigned char *) (th + 1); /* 选项起始地址 */
opt_rx->saw_tstamp = 0; /* 此ACK有没有带时间戳接下来才知道 */ while (length > 0) {
int opcode = *ptr++; /* 选项kind */
int opsize; switch (opcode) {
case TCPOPT_EOL: /* 结束选项,不常见到 */
return; case TCPOPT_NOP: /* 填充选项 */
length--; /* 此选项只占一个字节 */
continue; default:
opsize = *ptr++; /* 此选项长度 */ if (opsize < 2) /* "silly options" */
return; /* 选项长度过小 */ if (opsize > length)
return; /* don't parse partial options */ switch (opcode) {
...
case TCPOPT_SACK_PERM:
if (opsize == TCPOLEN_SACK_PERM && th->syn &&
!estab && sysctl_tcp_sack) { opt_rx->sack_ok = 1; /* SYN包中显示支持SACK */
tcp_sack_reset(opt_rx); /* 清空dsack和num_sacks */
}
break; case TCPOPT_SACK:
if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
!((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
opt_rx->sack_ok) { /*保存SACK选项的起始地址偏移*/
TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *) th;
}
break;
...
}
}
}
}
/* TCP options */
#define TCPOPT_NOP 1 /* Padding */
#define TCPOPT_EOL 0 /* End of options */
#define TCPOPT_MSS 2 /* Segment size negotiating */
#define TCPOPT_WINDOW 3 /* Window Scaling */
#define TCPOPT_SACK_PERM 4 /* SACK Permitted */
#define TCPOPT_SACK 5 /* SACK Block */
#define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */ static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
{
rx_opt->dsack = 0;
rx_opt->num_sacks = 0;
} /* This is the max number of SACKS that we'll generate and process.
* It's safe to increase this, although since:
* size = TCPOLEN_SACK_BASE_ALIGNED(4) + n * TCPOLEN_SACK_PERBLOCK(8)
* only four options will fit in a standard TCP header
*/
#define TCP_NUM_SACKS 4 /* SACK块数最多为4 */

SACK块合法性检查

检查SACK块或者DSACK块是否合法。

2.6.24之前的版本没有检查SACK块的合法性,而某些非法的SACK块可能会触发空指针的引用。

在3.1版本之前有一个小bug,处理DSACK时会产生问题,修复非常简单:

@if (! after(end_seq, tp->snd_una)),把非去掉。

符合以下任一条件的SACK块是合法的:

1. sack块和dsack块:snd_una < start_seq < end_seq <= snd_nxt

2. dsack块:undo_marker <= start_seq < end_seq <= snd_una

3. dsack块:start_seq < undo_marker < end_seq <= snd_una 且 end_seq - start_seq <= max_window

/* SACK block range validation checks that the received SACK block fits to the
* expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
*/
static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack, u32 start_seq, u32 end_seq)
{
/* Too far in future, or reversed (interpretation is ambiguous)
* end_seq超过了snd_nxt,或者start_seq >= end_seq,那么不合法
*/
if (after(end_seq, tp->snd_nxt) || ! before(start_seq, end_seq))
return 0; /* Nasty start_seq wrap-around check (see comments above) */
* start_seq超过了snd_nxt
*/
if (! before(start_seq, tp->snd_nxt))
return 0; /* In outstanding window? This is valid exit for D-SACKs too.
* start_seq == snd_una is non-sensical (see comments above)
*/
if (after(start_seq, tp->snd_una))
return 1; /* 合法 */ if (! is_dsack || ! tp->undo_marker)
return 0; /* Then it's D-SACK, and must reside below snd_una completely.
* 注意在3.1以前这里是:! after(end_seq, tp->snd_una),是一个bug
*/
if (after(end_seq, tp->snd_una))
return 0; if (! before(start_seq, tp->undo_marker))
return 1; /* dsack块合法 */ /* Too old,DSACK块太旧了*/
if (! after(end_seq, tp->undo_marker))
return 0; /* Undo_marker boundary crossing */
return !before(start_seq, end_seq - tp->max_window);
}

TCP的核心系列 — SACK和DSACK的实现(三)的更多相关文章

  1. TCP的核心系列 — SACK和DSACK的实现(一)

    TCP的实现中,SACK和DSACK是比较重要的一部分. SACK和DSACK的处理部分由Ilpo Järvinen (ilpo.jarvinen@helsinki.fi) 维护. tcp_ack() ...

  2. TCP的核心系列 — SACK和DSACK的实现(二)

    和18版本相比,37版本的SACK和DSACK的实现做了很多改进,最明显的就是需要遍历的次数少了, 减少了CPU的消耗.37版的性能提升了,代码有大幅度的改动,逻辑也更加复杂了. 本文主要内容:37版 ...

  3. TCP的核心系列 — SACK和DSACK的实现(七)

    我们发送重传包时,重传包也可能丢失,如果没有检查重传包是否丢失的机制,那么只能依靠超时来恢复了. 37版本把检查重传包是否丢失的部分独立出来,这就是tcp_mark_lost_retrans(). 在 ...

  4. TCP的核心系列 — SACK和DSACK的实现(六)

    上篇文章中我们主要说明如何skip到一个SACK块对应的开始段,如何walk这个SACK块包含的段,而没有涉及到 如何标志一个段的记分牌.37版本把给一个段打标志的内容独立出来,这就是tcp_sack ...

  5. TCP的核心系列 — SACK和DSACK的实现(五)

    18版本对于每个SACK块,都是从重传队列头开始遍历.37版本则可以选择性的遍历重传队列的某一部分,忽略 SACK块间的间隙.或者已经cache过的部分.这主要是通过tcp_sacktag_skip( ...

  6. TCP的核心系列 — SACK和DSACK的实现(四)

    和18版本不同,37版本把DSACK的检测部分独立出来,可读性更好. 37版本在DSACK的处理中也做了一些优化,对DSACK的两种情况分别进行处理. 本文主要内容:DSACK的检测.DSACK的处理 ...

  7. TCP的核心系列 — ACK的处理(二)

    本文主要内容:tcp_ack()中的一些细节,如发送窗口的更新.持续定时器等. 内核版本:3.2.12 Author:zhangskd @ csdn 发送窗口的更新 什么时候需要更新发送窗口呢? (1 ...

  8. TCP的核心系列 — ACK的处理(一)

    TCP发送数据包后,会收到对端的ACK.通过处理ACK,TCP可以进行拥塞控制和流控制,所以 ACK的处理是TCP的一个重要内容.tcp_ack()用于处理接收到的ACK. 本文主要内容:TCP接收A ...

  9. TCP的核心系列 — 重传队列的更新和时延的采样(二)

    在tcp_clean_rtx_queue()中,并非对每个ACK都进行时延采样.是否进行时延采样,跟这个ACK是否为 重复的ACK.这个ACK是否确认了重传包,以及是否使用时间戳选项都有关系. 本文主 ...

随机推荐

  1. Retrofit2.0通俗易懂的学习姿势,Retrofit2.0 + OkHttp3 + Gson + RxJava

    Retrofit2.0通俗易懂的学习姿势,Retrofit2.0 + OkHttp3 + Gson + RxJava Retrofit,因为其简单与出色的性能,也是受到很多人的青睐,但是他和以往的通信 ...

  2. MS Office2016留下的坑

    背景 问题源自论坛用户反馈,他用管家有几年了,之前使用IE都很正常,没有任何问题,但是最近突然发现,启动IE时,就会出现系统错误提示:无法启动此程序,因为计算机中丢失 api-ms-win-core- ...

  3. list标准函数的模拟

    ;反序 ( ) -> ( ) (define (rvs x) (let recur ((x x)(res '())) (if (null? x) res (recur (cdr x) (cons ...

  4. [Mysql]Innodb 独立表空间和共享表空间

    innodb有2中表空间方式: 共享表空间 和 独立表空间 查询数据的设置: show variables like '%per_table'; 默认是共享表空间,独立表空间在配置文件中添加 inno ...

  5. Android性能提升之强引用、软引用、弱引用、虚引用使用

    转载请把头部出处链接和尾部二维码一起转载,本文出自逆流的鱼yuiop:http://blog.csdn.net/hejjunlin/article/details/52637333 背景:收到公众投稿 ...

  6. Hibernate实体映射文件多对多等关系简单应用技巧

    认真开完以后,就能很简单的写出各种关系了 第一步,写注释: <!--xx属性,本类与Yy(类)的多对一 --> <!--xx属性,本类与Yy(类)的一对多 --> <!- ...

  7. Maven 介绍、安装使用

    简介         Maven是一个强大的构建工具,能够帮我们自动化构建过程,从清理.编译.测试到生成报告,再到打包和部署.只要使用Maven配置好项目,然后执行命令(如mvn clean inst ...

  8. 15 ActionBar 总结

    ActionBar 一, 说明 是一个动作栏 是窗口特性 提供给用户动作 导航模式 可以适配不同的屏幕 二, ActionBar 提供的功能 1. 显示菜单项 always:总是展示到ActionBa ...

  9. (一〇三)静态库(.a)的调试

    上节介绍的方法,只能创建静态库而不能调试,因为直接创建静态库工程并非可执行文件. 本文介绍的方法创建的静态库断点能够在调试时起作用. 为了能够调试静态库,应该在一个可执行工程(例如Single Vie ...

  10. Android开发学习之路--Activity之生命周期

    其实这篇文章应该要在介绍Activity的时候写的,不过那个时候还不怎么熟悉Activity,还是在这里详细介绍下好了.还是参考下官方文档的图吧: 从上面的流程,我们可以看出首先就是打开APP,开始执 ...