Hbase的存储
Hbase在生态系统中的位置
Hbase存储的逻辑视图
Hbase的存储格式
Hbase写数据流程
Hbase快速响应数据
Hbase在生态系统中的位置
HBase位于结构化存储层,Hadoop HDFS为HBase提供了高可靠性的底层存储支持,Hadoop MapReduce为HBase提供了高性能的计算能力,Zookeeper为HBase提供了稳定服务和failover机制。
Hbase存储的逻辑视图
1)行键(RowKey)
-- 行键是字节数组, 任何字符串都可以作为行键;
-- 表中的行根据行键进行排序,数据按照Row key的字节序(byte order)排序存储;
-- 所有对表的访问都要通过行键 (单个RowKey访问,或RowKey范围访问,或全表扫描) (二级索引)
2)列族(ColumnFamily)
-- CF必须在表定义时给出
-- 每个CF可以有一个或多个列成员(ColumnQualifier),列成员不需要在表定义时给出,新的列族成员可以随后按需、动态加入
-- 数据按CF分开存储,HBase所谓的列式存储就是根据CF分开存储(每个CF对应一个Store),这种设计非常适合于数据分析的情形
3)时间戳(TimeStamp)
-- 每个Cell可能又多个版本,它们之间用时间戳区分
4)单元格(Cell)
-- Cell 由行键,列族:限定符,时间戳唯一决定,数据全部以字节码形式存储
5)区域(Region)
-- HBase自动把表水平(按Row)划分成多个区域(region),每个region会保存一个表里面某段连续的数据;
-- 每个表一开始只有一个region,随着数据不断插入表,region不断增大,当增大到一个阀值的时候,region就会等分会两个新的region;
-- 当table中的行不断增多,就会有越来越多的region。这样一张完整的表被保存在多个Region 上。
-- HRegion是HBase中分布式存储和负载均衡的最小单元(默认256M)。最小单元表示不同的HRegion可以分布在不同的HRegionServer上。但一个HRegion不会拆分到多个server上。
特点:
无模式:每行都有一个可排序的主键和任意多的列,列可以根据需要动态的增加,同一张表中不同的行可以有截然不同的列;
面向列:面向列(族)的存储和权限控制,列(族)独立检索;
稀疏:空(null)列并不占用存储空间,表可以设计的非常稀疏;
Hbase的存储格式
HBase中的每张表都通过行键按照一定的范围被分割成多个子表(HRegion),默认一个HRegion超过256M就要被分割成两个,由HRegionServer管理,管理哪些HRegion由HMaster分配。
HRegionServer存取一个子表时,会创建一个HRegion对象,然后对表的每个列族(Column Family)创建一个Store实例,每个Store都会有0个或多个StoreFile与之对应,每个StoreFile都会对应一个HFile, HFile就是实际的存储文件。因此,一个HRegion有多少个列族就有多少个Store。另外,每个HRegion还拥有一个MemStore实例。memStore存储在内存中,StoreFile存储在HDFS上。
Region虽然是分布式存储的最小单元,但并不是存储的最小单元。Region由一个或者多个Store组成,每个store保存一个columns family;每个Store又由一个memStore和0至多个StoreFile组成,StoreFile包含HFile;memStore存储在内存中,StoreFile存储在HDFS上。
HBase是基于BigTable的面向列的分布式存储系统,其存储设计是基于Memtable / SSTable设计的,主要分为两部分,一部分为内存中的MemStore (Memtable),另外一部分为磁盘(这里是HDFS)上的HFile (SSTable)。还有就是存储WAL的log,主要实现类为HLog.
本质上MemStore就是一个内存里放着一个保存KEY/VALUE的MAP,当MemStore(默认64MB)写满之后,会开始刷磁盘操作。
HFile结构:
Data Block:保存表中的数据,这部分可以被压缩
Meta Block:(可选)保存用户自定义的kv对,可以被压缩。
File Info :Hfile的meta元信息,不被压缩,定长。
Data Block Index :Data Block的索引。每个Data块的起始点。
Meta Block Index:(可选的)Meta Block的索引,Meta块的起始点。
Trailer: 定长。保存了每一段的偏移量,读取一个HFile时,会首先读取Trailer,Trailer有指针指向其他数据块的起始点,保存了每个段的起始位置(段的Magic Number用来做安全check),然后,DataBlock Index会被读取到内存中,这样,当检索某个key时,不需要扫描整个HFile,而只需从内存中找到key所在的block,通过一次磁盘io将整个block读取到内存中,再找到需要的key。DataBlock Index采用LRU机制淘汰。
HFile的Data Block,Meta Block通常采用压缩方式存储。Data Block是HBase I/O的基本单元,为了提高效率,HRegionServer中有基于LRU的Block Cache机制。每个Data块的大小可以在创建一个Table的时候通过参数指定,大号的Block有利于顺序Scan,小号Block利于随机查询。每个Data块除了开头的Magic以外就是一个个KeyValue对拼接而成, Magic内容就是一些随机数字,目的是防止数据损坏。
HFile中的Key-Value结构
HFile中的每个Key-Value对就是一个简单的byte数组。但这个byte数组包含了很多项信息,并含有固定的结构。(有点类似数据流)
开始是两个长度固定的数值,分别表示Key的长度和Value的长度。紧接着是Key,开始是固定长度的数值,表示RowKey的长度,紧接着是RowKey,然后是固定长度的数值,表示Family的长度,然后是Family(列族),接着是Qualifier(小列),然后是两个固定长度的数值,表示Time Stamp和Key Type(Put/Delete)。Value部分则相对简单,是纯粹的二进制数据。
HBase 为每个值维护了多级索引,即:<key, column family, column name(qualifer), timestamp>
Hbase写数据流程
a) Client发起了一个HTable.put(Put)请求给HRegionServer
b) HRegionServer会将请求匹配到某个具体的HRegion上面
c) 决定是否写WAL log。WAL log文件是一个标准的Hadoop SequenceFile,文件中存储了HLogKey,这些Keys包含了和实际数据对应的序列号,主要用于崩溃恢复。
d) Put数据保存到MemStore中,同时检查MemStore状态,如果满了,则触发Flush to Disk请求。
e) HRegionServer处理Flush to Disk的请求,将数据写成HFile文件并存到HDFS上,并且存储最后写入的数据序列号,这样就可以知道哪些数据已经存入了永久存储的HDFS中。
由于不同的列族会共享region,所以有可能出现,一个列族已经有1000万行,而另外一个才100行。当一个要求region分割的时候,会导致100行的列会同样分布到多个region中。所以,一般建议不要设置多个列族。
Hbase快速响应数据
hbase上的数据是以storefile(HFile)二进制流的形式存储在HDFS上block块中;但是HDFS并不知道的hbase存的是什么,它只把存储文件是为二进制文件,也就是说,hbase的存储数据对于HDFS文件系统是透明的。
HBase HRegion servers集群中的所有的region的数据在服务器启动时都是被打开的,并且在内冲初始化一些memstore,相应的这就在一定程度上加快系统响应;而Hadoop中的block中的数据文件默认是关闭的,只有在需要的时候才打开,处理完数据后就关闭,这在一定程度上就增加了响应时间。
从根本上说,HBase能提供实时计算服务主要原因是由其架构和底层的数据结构决定的,即由LSM-Tree + HTable(region分区) + Cache决定——客户端可以直接定位到要查数据所在的HRegion server服务器,然后直接在服务器的一个region上查找要匹配的数据,并且这些数据部分是经过cache缓存的。
Client访问用户数据之前需要首先访问zookeeper,然后访问-ROOT-表,接着访问.META.表,最后才能找到用户数据的位置去访问,中间需要多次网络操作,不过client端会做cache缓存。
1、Client会通过内部缓存的相关的-ROOT-中的信息和.META.中的信息直接连接与请求数据匹配的HRegion server;
2、然后直接定位到该服务器上与客户请求对应的region,客户请求首先会查询该region在内存中的缓存——memstore(memstore是是一个按key排序的树形结构的缓冲区);
3、如果在memstore中查到结果则直接将结果返回给client;
4、在memstore中没有查到匹配的数据,接下来会读已持久化的storefile文件中的数据。storefile也是按key排序的树形结构的文件——并且是特别为范围查询或block查询优化过的,;另外hbase读取磁盘文件是按其基本I/O单元(即 hbase block)读数据的。具体就是过程就是:
如果在BlockCache中能查到要造的数据则这届返回结果,否则就读去相应的storefile文件中读取一block的数据,如果还没有读到要查的数据,就将该数据block放到HRegion Server的blockcache中,然后接着读下一block块儿的数据,一直到这样循环的block数据直到找到要请求的数据并返回结果;如果将该region中的数据都没有查到要找的数据,最后接直接返回null,表示没有找的匹配的数据。当然blockcache会在其大小大于一的阀值(heapsize * hfile.block.cache.size * 0.85)后启动基于LRU算法的淘汰机制,将最老最不常用的block删除。
Hbase容错和恢复
该机制用于数据的容错和恢复:
每个HRegionServer中都有一个HLog对象,HLog是一个实现Write Ahead Log的类,在每次用户操作写入MemStore的同时,也会写一份数据到HLog文件中(HLog文件格式见后续),HLog文件定期会滚动出新的,并删除旧的文件(已持久化到StoreFile中的数据)。当HRegionServer意外终止后,HMaster会通过Zookeeper感知到,HMaster首先会处理遗留的 HLog文件,将其中不同Region的Log数据进行拆分,分别放到相应region的目录下,然后再将失效的region重新分配,领取 到这些region的HRegionServer在Load Region的过程中,会发现有历史HLog需要处理,因此会Replay HLog中的数据到MemStore中,然后flush到StoreFiles,完成数据恢复。
HBase容错性
Master容错:Zookeeper重新选择一个新的Master
*无Master过程中,数据读取仍照常进行;
*无master过程中,region切分、负载均衡等无法进行;
RegionServer容错:定时向Zookeeper汇报心跳,如果一旦时间内未出现心跳,Master将该RegionServer上的Region重新分配到其他RegionServer上,失效服务器上“预写”日志由主服务器进行分割并派送给新的RegionServer
Zookeeper容错:Zookeeper是一个可靠地服务,一般配置3或5个Zookeeper实例
Hbase的存储的更多相关文章
- HBase 的存储结构
HBase 的存储结构 2016-10-17 杜亦舒 HBase 中的表常常是超级大表,这么大的表,在 HBase 中是如何存储的呢?HBase 会对表按行进行切分,划分为多个区域块儿,每个块儿名为 ...
- hbase的存储体系
一.了解hbase的存储体系. hbase的存储体系核心的有Split机制,Flush机制和Compact机制. 1.split机制 每一个hbase的table表在刚刚开始的时候,只有一个regio ...
- HBase作为存储方案
HBase存储特点 * Client 1. 包含访问HBase的接口,并维护cache来加快对HBase的访问,比如region的位置信息. * Zookeeper: 1. 选举集群中的Master, ...
- HBase底层存储原理
HBase底层存储原理——我靠,和cassandra本质上没有区别啊!都是kv 列存储,只是一个是p2p另一个是集中式而已! 首先HBase不同于一般的关系数据库, 它是一个适合于非结构化数据存储的数 ...
- BigData NoSQL —— ApsaraDB HBase数据存储与分析平台概览
一.引言 时间到了2019年,数据库也发展到了一个新的拐点,有三个明显的趋势: 越来越多的数据库会做云原生(CloudNative),会不断利用新的硬件及云本身的优势打造CloudNative数据库, ...
- hbase操作(shell 命令,如建表,清空表,增删改查)以及 hbase表存储结构和原理
两篇讲的不错文章 http://www.cnblogs.com/nexiyi/p/hbase_shell.html http://blog.csdn.net/u010967382/article/de ...
- HBase海量数据存储
1.简介 HBase是一个基于HDFS的.分布式的.面向列的非关系型数据库. HBase的特点 1.海量数据存储,HBase表中的数据能够容纳上百亿行*上百万列. 2.面向列的存储,数据在表中是按照列 ...
- HBase底层存储原理——我靠,和cassandra本质上没有区别啊!都是kv 列存储,只是一个是p2p另一个是集中式而已!
理解HBase(一个开源的Google的BigTable实际应用)最大的困难是HBase的数据结构概念究竟是什么?首先HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库.另一个不 ...
- HBase数据存储
HRegionServer  HBase的数据文件都存储在HDFS上,格式主要有两种: - HFile:HBase中KeyValue数据的存储格式,HFile是Hadoop的二进制文件,实际上Sto ...
随机推荐
- PHP实现QQ登录的开发教程
第三方登录,就是使用大家比较熟悉的比如QQ.微信.微博等第三方软件登录自己的网站,这可以免去注册账号.快速留住用户的目的,免去了相对复杂的注册流程.下边就给大家讲一下怎么使用PHP开发QQ登录的功能. ...
- python --- queue模块使用
1. 什么是队列? 学过数据结构的人都知道,如果不知道队列,请Google(或百度). 2. 在python中什么是多生产者,多消费模型? 简单来说,就是一边生产(多个生产者),一边消费(多个消费者) ...
- Jetson TX2刷机教程(原创)
Jetson TX2刷机教程 一,硬件准备 1台host主机(linux系统,最好是ubuntu64位) 1台Jetson TX2的平台 二,软件包 JetPack(Jetson SDK) 下载地址: ...
- Django 部署到Nginx
在网上搜了很多篇Django+uwsgi+Nginx的部署文章,忙了一下午头昏脑胀,最终完成了部署.部署文章流程讲解都很好,但在细节上或许缺乏一些注意力,导致我多篇文章来回切换在字里行间寻找蛛丝马迹. ...
- 小白的.Net Core 2.0 ConsoleApp入门(keng)指南(一)
一.准备工作 准备工作很简单,甚至可以不用Visual Studio,一只.NET CORE和Runtime即可(你有考虑过世界第一IDE的感受吗) 下载:https://www.microsoft. ...
- linux tar 压缩解压命令
tar命令: -c 压缩-x 解压缩-t 不解压的情况下查看文件内容-r 向压缩文件追加文件-u 更新压缩文件 以上参数必须和'-f'参数连用,且'-f'必须为最后一个参数,后接文档名 -z 对应gz ...
- flex基本概念
基本使用 任何一个容器都可以指定为flex布局 .box { display: flex; } 行内元素也可以使用flex .box { display: inline-flex; } Webkit内 ...
- copy-webpack-plugin最简使用示例
拷贝文件的插件 加载插件 $ npm install copy-webpack-plugin --save-dev API new CopyWebpackPlugin(patterns: Array, ...
- 正确理解python的装饰器
一直在用别人写的装饰器,从来没有对其原理进行深入的探究.今天趁有点闲着的时间,把装饰器的原理好好看了一遍,做一下整理. 一.装饰器的基本原理 装饰器就是一个可以接受调用也可以返回调用的调用.装饰器本身 ...
- HTTP/1.1与HTTP/1.0的区别[转]
原文链接:http://blog.csdn.net/forgotaboutgirl/article/details/6936982 下面主要从几个不同的方面介绍HTTP/1.0与HTTP/1.1之间的 ...