Time Limit: 30 Sec  Memory Limit: 128 MB

Description

  给定矩阵 M,请计算 M^n,并将其中每一个元素对 1000000007 取模输出。

Input

  第 1 行包含两个整数 n,k,其中 n 使用二进制表示,可能含有前导零;
  余下 k 行描述了一个 k * k 的矩阵 M。

Output

  输出题目描述中要求的矩阵,格式同输入。

Sample Input

  010 3
  5 9 5
  5 4 0
  8 8 8

Sample Output

  110 121 65
  45 61 25
  144 168 104

HINT

  对于 100% 数据,满足 n <= 2^10000;k <= 50; 0 <= Mij < 10^9 +7

Solution

  矩阵乘法特征多项式优化,矩阵M的特征多项式是$f(\lambda)=|M-\lambda I|$,随便带入k+1个$\lambda$,高斯消元求出行列式的值,然后插值就能求出M的特征多项式(这里的总复杂度为$O(k^4)$,主要在计算行列式上面)。根据Cayley-Hamilton定理,$f(M)=0$,也就是说对同一个式子减去若干个$f(M)$后值不变,我们即可用M的k-1次多项式表示一个M的次幂,两个多项式相乘后对$f(M)$取模,然后就可以快速幂了,多项式取模和乘法用$O(k^2)$暴力就够了,总复杂度$O(k^4+k^2logn)$。

Code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
inline int read()
{
int x;char c;
while((c=getchar())<''||c>'');
for(x=c-'';(c=getchar())>=''&&c<='';)x=x*+c-'';
return x;
}
#define ML 10000
#define MK 50
#define MN 100
#define MOD 1000000007
char s[ML+];
int k,c[MK+][MK+],x[MK+],ans[MK+][MK+];
inline int mo1(int x){return x<MOD?x:x-MOD;}
inline int mo2(int x){return x<?x+MOD:x;}
int inv(int x)
{
int r=,y=MOD-;
for(;y;y>>=,x=1LL*x*x%MOD)if(y&)r=1LL*r*x%MOD;
return r;
}
struct poly
{
int n,a[MN+];
poly(int n=,int a0=,int a1=):n(n){memset(a,,sizeof(a));a[]=a0;a[]=a1;}
friend poly operator+(poly a,const poly&b)
{
a.n=max(a.n,b.n);
for(int i=;i<=a.n;++i)a.a[i]=mo1(a.a[i]+b.a[i]);
return a;
}
friend poly operator*(const poly&a,const poly&b)
{
poly c(a.n+b.n);int i,j;ll x;
for(i=;i<=c.n;c.a[i++]=x%MOD)for(x=j=;j<=i&&j<=a.n;++j)
x+=1LL*a.a[j]*b.a[i-j],x>8e18?x%=MOD:;
return c;
}
friend poly operator*(poly a,int b)
{
for(int i=;i<=a.n;++i)a.a[i]=1LL*a.a[i]*b%MOD;
return a;
}
friend poly operator/(poly a,const poly&b)
{
poly c(a.n-b.n);int i,j;
for(i=a.n;i>=b.n;--i)
{
c.a[i-b.n]=1LL*a.a[i]*inv(b.a[b.n])%MOD;
for(j=;j<=b.n;++j)a.a[i-j]=mo2((a.a[i-j]-1LL*b.a[b.n-j]*c.a[i-b.n])%MOD);
}
return c;
}
friend poly operator%(poly a,const poly&b)
{
int i,j,x;
for(i=a.n;i>=b.n;--i)
{
x=1LL*a.a[i]*inv(b.a[b.n])%MOD;
for(j=;j<=b.n;++j)a.a[i-j]=mo2((a.a[i-j]-1LL*b.a[b.n-j]*x)%MOD);
}
a.n=b.n-;
return a;
}
}f,a,p(,);
struct mat
{
int z[MK+][MK+];
mat(){memset(z,,sizeof(z));}
friend mat operator*(const mat&a,const mat&b)
{
mat c;int i,j,k;ll x;
for(i=;i<=MK;++i)for(j=;j<=MK;c.z[i][j++]=x%MOD)
for(x=k=;k<=MK;++k)x+=1LL*a.z[i][k]*b.z[k][j],x>8e18?x%=MOD:;
return c;
}
}m,n;
int cal(int x)
{
int i,j,l,ans=;
for(i=;i<=k;++i)for(j=;j<=k;++j)c[i][j]=m.z[i][j];
for(i=;i<=k;++i)c[i][i]=mo2(c[i][i]-x);
for(i=;i<=k;++i)
{
for(j=i;j<=k;++j)if(c[j][i])break;
if(j>k)return ;
if(j>i)for(ans=MOD-ans,l=i;l<=k;++l)swap(c[i][l],c[j][l]);
ans=1LL*ans*c[i][i]%MOD;
for(j=i;++j<=k;)
{
x=1LL*c[j][i]*inv(c[i][i])%MOD;
for(l=i;l<=k;++l)c[j][l]=mo2((c[j][l]-1LL*c[i][l]*x)%MOD);
}
}
return ans;
}
int main()
{
int i,j,l,v;
scanf("%s",s+);k=read();
for(i=;i<=k;++i)for(j=;j<=k;++j)m.z[i][j]=read();
for(i=;i<=k;++i)x[i]=cal(i);
for(i=;i<=k;++i)p=p*poly(,mo2(-i),);
for(i=;i<=k;++i)
{
for(v=x[i],j=;j<=k;++j)if(i!=j)v=1LL*v*inv(mo2(i-j))%MOD;
f=f+p/poly(,mo2(-i),)*v;
}
a=poly(,);p=poly(,,);
for(i=strlen(s+);i;--i,p=p*p%f)if(s[i]>'')a=a*p%f;
for(i=;i<=k;++i)n.z[i][i]=;
for(l=;l<k;++l,n=n*m)for(i=;i<=k;++i)for(j=;j<=k;++j)
ans[i][j]=(ans[i][j]+1LL*a.a[l]*n.z[i][j])%MOD;
for(i=;i<=k;printf("%d\n",ans[i++][j]))for(j=;j<k;++j)printf("%d ",ans[i][j]);
}

[BZOJ]4162: shlw loves matrix II的更多相关文章

  1. [bzoj4162]shlw loves matrix II

    来自FallDream的博客,未经允许,请勿转载,谢谢 给定矩阵k*k的矩阵M,请计算 M^n,并将其中每一个元素对 1000000007 取模输出. k<=50 n<=2^10000 考 ...

  2. BZOJ4162:shlw loves matrix II

    传送门 利用Cayley-Hamilton定理,用插值法求出特征多项式 \(P(x)\) 然后 \(M^n\equiv M^n(mod~P(x))(mod~P(x))\) 然后就多项式快速幂+取模 最 ...

  3. bzoj 3462: DZY Loves Math II

    3462: DZY Loves Math II Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 211  Solved: 103[Submit][Sta ...

  4. bzoj 4161 Shlw loves matrixI——常系数线性齐次递推

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4161 还是不能理解矩阵…… 关于不用矩阵理解的方法:https://blog.csdn.ne ...

  5. BZOJ 3569 DZY Loves Chinese II

    Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以修能. 遂降临于OI界,欲以神力而凌♂辱众生. 今Dzy有一魞歄图,其上 ...

  6. BZOJ 3569: DZY Loves Chinese II [高斯消元XOR 神题]

    http://www.lydsy.com/JudgeOnline/problem.php?id=3569 题意:多次询问一个无向连通图当图中某k条边消失时这个图是否联通 强制在线 太神啦啦啦啦啦啦啦啦 ...

  7. [bzoj4161]Shlw loves matrix I

    来自FallDream的博客,未经允许,请勿转载,谢谢. 给定数列 {hn}前k项,其后每一项满足 hn = a1*h(n-1) + a2*h(n-2) + ... + ak*h(n-k) 其中 a1 ...

  8. bzoj 4161: Shlw loves matrixI

    Description 给定数列 {hn}前k项,其后每一项满足 hn = a1h(n-1) + a2h(n-2) + ... + ak*h(n-k) 其中 a1,a2...ak 为给定数列.请计算 ...

  9. BZOJ 3569 DZY Loves Chinese II 树上差分+线性基

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3569 Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅 ...

随机推荐

  1. DNS协议(一)

    在互联网上要想与另外一台主机通信,要知道对方的IP地址,但是IP地址是很难记忆的, 比如百度的一台服务器的IP地址为115.239.210.27,我们在浏览器中输入http://115.239.210 ...

  2. 【iOS】swift init构造器

    这几天在使用 Swift 重写原来的一个运动社交应用 SportJoin. 为什么要重写呢? 首先因为实在找不到设计师给我作图; 其次, 我也闲不下来, 想找一些项目做, 所以只好将原来的代码重写了. ...

  3. sqlserver之排序规则和ETL不支持sqlserverdatetime2的问题

    sqlserver的排序规则大概分为Windows 排序规则和 SQL Server 排序规则.数据在安装的时候,默认不设置会默认为SQL_Latin1_General_CP1_CI_AI.数据库在创 ...

  4. 一个毕生难忘的BUG

    记得以前接手过一个Java项目,服务器程序,直接让Jar在linux上跑的那种, 这个项目由两个web服务组成,也就是两条Java进程,主进程 xxx.jar,辅助进程 xxx_helper.jar. ...

  5. Solr搜索引擎搭建详细过程

    1    什么是solr Solr 是Apache下的一个顶级开源项目,采用Java开发,它是基于Lucene的全文搜索服务器.Solr可以独立运行在Jetty.Tomcat等这些Servlet容器中 ...

  6. React 深入系列1:React 中的元素、组件、实例和节点

    文:徐超,<React进阶之路>作者 授权发布,转载请注明作者及出处 React 深入系列,深入讲解了React中的重点概念.特性和模式等,旨在帮助大家加深对React的理解,以及在项目中 ...

  7. Document Object Model

    什么是DOM W3C制定的书写HTML分析器的标准接口规范 全称 Document Object Model 文档对象模型DOM为HTML文档提供的一个API(接口) 可以操作HTML文档 <! ...

  8. ZendStudio的使用技巧

    为了使得ZendStudio支持volt模版可以在首选项中的ContentType加上.volt就行 在ZendStudio中的->help中有一个installNewssoftWare,然后会 ...

  9. JS判断不同操作系统显示不同样式css

    <script type="text/javascript"> var system ={}; var p = navigator.platform; //判断是否为P ...

  10. JavaScript 动态显示当前时间

    代码如下: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <tit ...