题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=4008
题解:

概率dp,神仙题
如果我们可以求出每种牌被取到的概率f,那么最后期望造成的伤害也就很好计算了。
定义dp[i][j]表示有j轮游戏在1~i中的某张牌处就结束的概率。
那么此时我们考虑dp[i][j]会怎样对f[i+1]造成贡献:
只剩下了R-j轮游戏进行到了第i+1张牌,怎么计算这种情况下第i+1张牌发动技能的概率g呢?
(令p为其发动技能的概率,并给这R-j轮游戏重新依次编号为1,2,……,R-j)
显然有:g=p+(1-p)*p+(1-p)^2*p+p……+(1-p)^(R-j-1)*p
上式表示重新编号后的在第1轮发动技能的概率+在第2轮发动技能的概率+……+在第R-j轮发动技能的概率。
然而不需要这么麻烦的计算,因为上面的g=1-(1-p)^(R-j),(自己YY为什么是对的吧)
然后把对f[i+1]进行贡献:f[i+1]+=dp[i][j]*g

接下来考虑如何转移dp[i][j]:
1.这R-j轮可以进行到第i+1张牌的机会都没有让其发动技能:
dp[i+1][j]+=dp[i][j]*(1-p)^(R-j)
2.这R-j轮可以进行到第i+1张牌的机会让其发动了一次技能:
dp[i+1][j+1]+=dp[i][j]*(1-(1-p)^(R-j))

然后就是不断转移dp的同时去求出f[]数组。

(真的是神仙题,题解都看了好久,好像第一次遇到这种定义了一个莫名其妙的dp状态去辅助求出另外一个东西从而得出答案的题。。。)

代码:

#include<bits/stdc++.h>
using namespace std;
double dp[250][150],p[250],f[250],ans;
int d[250];
int N,R,Case;
double fastpow(double a,int b){
double ret=1;
for(;b;a=a*a,b>>=1)
if(b&1) ret*=a;
return ret;
}
int main(){
for(scanf("%d",&Case);Case;Case--){
scanf("%d%d",&N,&R);
for(int i=1;i<=N;i++) scanf("%lf%d",&p[i],&d[i]),f[i]=0;
for(int i=0;i<=N;i++) for(int j=0;j<=R;j++) dp[i][j]=0;
dp[0][0]=1; ans=0;
for(int i=0;i<N;i++)
for(int j=0;j<=R;j++){
double k=fastpow(1-p[i+1],R-j);
dp[i+1][j]+=dp[i][j]*k;
if(j+1<=R){
dp[i+1][j+1]+=dp[i][j]*(1-k);
f[i+1]+=dp[i][j]*(1-k);
}
}
for(int i=1;i<=N;i++) ans+=f[i]*d[i];
printf("%.10lf\n",ans);
}
return 0;
}

  

●BZOJ 4008 [HNOI2015]亚瑟王的更多相关文章

  1. BZOJ 4008: [HNOI2015]亚瑟王( dp )

    dp(i, j)表示考虑了前i张牌, 然后还有j轮的概率. 考虑第i+1张牌: 发动的概率 : p = dp(i, j) * (1 - (1-p[i+1])^j) 没发动的概率 : dp(i, j) ...

  2. bzoj 4008: [HNOI2015]亚瑟王

    Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 亮.众所周知,亚瑟王是一 ...

  3. BZOJ 4008: [HNOI2015]亚瑟王 [DP 概率 !!!]

    传送门 题意: $r$轮$n$张卡牌,每一轮依次考虑每张卡牌,$p_i$概率发动造成$d_i$伤害后结束本轮或者继续考虑下一张 每张卡牌发动过之后以后都会跳过 求$r$轮之后的期望伤害 看了一节课出题 ...

  4. 4008: [HNOI2015]亚瑟王

    4008: [HNOI2015]亚瑟王 链接 分析: 根据期望的线性性,直接求出每张牌出现的概率,最后乘以攻击力就是答案. 每张牌出现的概率只与它前面的牌有关,与后面的没有关系,于是按顺序考虑每张牌. ...

  5. 【BZOJ】4008: [HNOI2015]亚瑟王

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4008 这题主要在于:先算概率,再算期望! 一轮一轮的计算似乎很复杂,每一轮它其实是可以看作 ...

  6. bzoj[HNOI2015]亚瑟王 - 递推与动规 - 概率与期望

    [bzoj4008][HNOI2015]亚瑟王 2015年4月22日3,2991 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之 ...

  7. 【BZOJ4008】[HNOI2015]亚瑟王(动态规划)

    [BZOJ4008][HNOI2015]亚瑟王(动态规划) 题面 BZOJ 洛谷 题解 设\(f[i][j]\)表示前\(i\)张卡中有\(j\)张被触发的概率. 分两种情况转移,即当前这张是否被触发 ...

  8. 【BZOJ4008】[HNOI2015]亚瑟王

    [BZOJ4008][HNOI2015]亚瑟王 题面 bzoj 洛谷 题解 由期望的线性性 可以知道,把所有牌打出的概率乘上它的伤害加起来就是答案 记第$i$张牌打出的概率为$fp[i]$ 则 $$ ...

  9. 【BZOJ4008】[HNOI2015]亚瑟王 期望

    [BZOJ4008][HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最 ...

随机推荐

  1. Beta冲刺第三天

    一.昨天的困难 没有困难. 二.今天进度 1.林洋洋:修改权限相关的资源表示,修复flex布局排版高度问题,修复文件更新问题,去除登录页面的默认账号密码,服务器部署. 2.黄腾达:修复日程首次执行时间 ...

  2. 201621123057 《Java程序设计》第3周学习总结

    1. 本周学习总结 初学面向对象,会学习到很多碎片化的概念与知识.尝试学会使用思维导图将这些碎片化的概念.知识点组织起来.请使用工具画出本周学习到的知识点及知识点之间的联系.步骤如下: 1.1 写出你 ...

  3. 20145237《Java程序设计》第一周学习总结

    教材学习内容总结 java可分为Java SE.Java EE.Java ME三大平台. java SE分为JVM.JRE.JDK.与java语言四个部分. JRE包括java SE API和JVM. ...

  4. TOTP算法 基于时间的一次性密码

    /** Copyright (c) 2011 IETF Trust and the persons identified as authors of the code. All rights rese ...

  5. 从Nest到Nesk -- 模块化Node框架的实践

    文: 达孚(沪江Web前端架构师) 本文原创,转至沪江技术 首先上一下项目地址(:>): Nest:https://github.com/nestjs/nest Nesk:https://git ...

  6. python 面向对象之继承与派生

    一:初识继承 1,什么是继承? 继承指的是类与类之间的关系,是一种什么"是"什么的关系,继承的功能之一就是用来解决代码重用问题 继承是一种创建新类的方式,在python中,新建的类 ...

  7. Linux基础常用命令

    Linux 下命令有很多,并且很多命令用法又有不同的选项,这里介绍一些常用的最基本的Linux命令的用法,希望给大家留下便利之处. 1.cd 切换目录.例如 cd /home 可切换到home目录,  ...

  8. php的函数参数按照从左到右来赋值

    PHP 中自定义函数参数赋默认值 2012-07-07 13:23:00|  分类: php自定义函数,默|举报|字号 订阅     下载LOFTER我的照片书  |     php自定义函数接受参数 ...

  9. jiVMware的网络配置Linux

    需求需要配置VMware的虚拟Linux的ip以达到本地可以访问,而且虚拟机Linux可以上网: 第一方案:选择桥接模式 思路:因为桥接可以,使得虚拟机Linux把本地当做一座桥一样连接到路由器,然后 ...

  10. Python内置函数(15)——memoryview

    英文文档: class memoryview(obj) memoryview objects allow Python code to access the internal data of an o ...