一、下图是典型的UDP客户端/服务器通讯过程

下面依照通信流程,我们来实现一个UDP回射客户/服务器:

#include <sys/types.h>
#include <sys/socket.h>
ssize_t send(int sockfd, const void *buf, size_t len, int flags);
ssize_t sendto(int sockfd, const void *buf, size_t len, int flags, const struct sockaddr *dest_addr, socklen_t addrlen);

当套接字处于“已连接”的状态时,才可以使用send,当flags = 0 时 send 与 write 一致。

且 send(sockfd, buf, len, flags);  即  sendto(sockfd, buf, len, flags, NULL, 0);

ssize_t recv(int sockfd, void *buf, size_t len, int flags);
ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags, struct sockaddr *src_addr, socklen_t *addrlen);

recv 与 recvfrom 的关系与 send 与 sendto 的关系一致。

recvfrom的最后两个参数类似于accept的最后两个参数:返回时其中套接字地址结构的内容告诉我们是谁发送了数据报(UDP情况下)或是谁发起了连接(TCP情况下)。sendto的最后两个参数类似于connect的最后两个参数:调用时其中套接字地址结构被我们填入数据报将发往(UDP情况下)或与之建立连接(TCP情况下)的协议地址。

服务器代码serv.c:

#include<stdio.h>
#include<stdlib.h>
#include<unistd.h>
#include<errno.h>
#include<sys/types.h>
#include<sys/socket.h>
#include<netinet/in.h>
#include<string.h> #define ERR_EXIT(m) \
do { \
perror(m); \
exit(EXIT_FAILURE); \
} while (0) void echo_ser(int sock)
{
char recvbuf[1024] = {0};
struct sockaddr_in peeraddr;
socklen_t peerlen;
int n; while (1)
{ peerlen = sizeof(peeraddr);
memset(recvbuf, 0, sizeof(recvbuf));
n = recvfrom(sock, recvbuf, sizeof(recvbuf), 0,
(struct sockaddr *)&peeraddr, &peerlen);
if (n == -1)
{ if (errno == EINTR)
continue; ERR_EXIT("recvfrom error");
}
else if(n > 0)
{ fputs(recvbuf, stdout);
sendto(sock, recvbuf, n, 0,
(struct sockaddr *)&peeraddr, peerlen);
}
}
close(sock);
} int main(void)
{
int sock;
if ((sock = socket(PF_INET, SOCK_DGRAM, 0)) < 0)
ERR_EXIT("socket error"); struct sockaddr_in servaddr;
memset(&servaddr, 0, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_port = htons(5188);
servaddr.sin_addr.s_addr = htonl(INADDR_ANY); if (bind(sock, (struct sockaddr *)&servaddr, sizeof(servaddr)) < 0)
ERR_EXIT("bind error"); echo_ser(sock); return 0;
}

客户端代码cli.c:

#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <string.h> #define ERR_EXIT(m) \
do \
{ \
perror(m); \
exit(EXIT_FAILURE); \
} while(0) void echo_cli(int sock)
{
struct sockaddr_in servaddr;
memset(&servaddr, 0, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_port = htons(5188);
servaddr.sin_addr.s_addr = inet_addr("127.0.0.1"); int ret;
char sendbuf[1024] = {0};
char recvbuf[1024] = {0};
while (fgets(sendbuf, sizeof(sendbuf), stdin) != NULL)
{ sendto(sock, sendbuf, strlen(sendbuf), 0, (struct sockaddr *)&servaddr, sizeof(servaddr)); ret = recvfrom(sock, recvbuf, sizeof(recvbuf), 0, NULL, NULL);
if (ret == -1)
{
if (errno == EINTR)
continue;
ERR_EXIT("recvfrom");
} fputs(recvbuf, stdout);
memset(sendbuf, 0, sizeof(sendbuf));
memset(recvbuf, 0, sizeof(recvbuf));
} close(sock); } int main(void)
{
int sock;
if ((sock = socket(PF_INET, SOCK_DGRAM, 0)) < 0)
ERR_EXIT("socket"); echo_cli(sock); return 0;
}

编译运行server,在两个终端里各开一个client与server交互,可以看到server具有并发服务的能力。用Ctrl+C关闭server,然后再运行server,此时client还能和server联系上。和前面TCP程序的运行结果相比较,我们可以体会无连接的含义。

二、UDP编程注意点

1、UDP报文可能会丢失、重复
2、UDP报文可能会乱序
3、UDP缺乏流量控制
4、UDP协议数据报文截断
5、recvfrom返回0,不代表连接关闭,因为udp是无连接的。
6、ICMP异步错误
7、UDP connect
8、UDP外出接口的确定

由于UDP不需要维护连接,程序逻辑简单了很多,但是UDP协议是不可靠的,实际上有很多保证通讯可靠性的机制需要在应用层实现,即123点所提到的。

对于第4点,可以写个小程序测试一下:

#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <string.h> #define ERR_EXIT(m) \
do \
{ \
perror(m); \
exit(EXIT_FAILURE); \
} while(0) int main(void)
{
int sock;
if ((sock = socket(PF_INET, SOCK_DGRAM, 0)) < 0)
ERR_EXIT("socket"); struct sockaddr_in servaddr;
memset(&servaddr, 0, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_port = htons(5188);
servaddr.sin_addr.s_addr = htonl(INADDR_ANY); if (bind(sock, (struct sockaddr *)&servaddr, sizeof(servaddr)) < 0)
ERR_EXIT("bind"); sendto(sock, "ABCD", 4, 0, (struct sockaddr *)&servaddr, sizeof(servaddr)); char recvbuf[1];
int n;
int i;
for (i = 0; i < 4; i++)
{
/* udp是报式协议,即若一次性接收的空间小于发来的数据,有可能造成报文截断,
* 但一定没有tcp的粘包问题 */
n = recvfrom(sock, recvbuf, sizeof(recvbuf), 0, NULL, NULL);
if (n == -1)
{
if (errno == EINTR)
continue;
ERR_EXIT("recvfrom");
}
else if(n > 0)
printf("n=%d %c\n", n, recvbuf[0]);
}
return 0;
}

上述程序是自己发送数据给自己,发送了4个字节,但我们只提供1个字节的缓冲区recvbuf,第一次recvfrom 读取一个字节,但接下去循环却读不到剩下的数据了,因为udp 是报式协议,如果一次性接收的缓冲区小于发来的数据,有可能造成报文截断反观tcp流式协议,可以一次读取一个数据包的一部分,也可以一次性读取多个数据包,但这也正是其会造成粘包问题的来源,所以也说udp 协议不会有粘包问题,因为一次就接收一个消息。输出如下:

huangcheng@ubuntu:~$ ./a.out
n=1 A

接收了一个字符之后,再次recvfrom 就阻塞了。

对于第5点,如果我们使用sendto 发送的数据大小为0,则发送给对方的是只含有各层协议头部的数据帧,recvfrom 会返回0,但并不代表对方关闭连接,因为udp 本身没有连接的概念。

第678点合起来一起讲,可以看到我们的客户端程序现在没有调用connect,不运行服务器程序,直接运行客户端程序(上面的客户端程序:cli.c),查看现象:

huangcheng@ubuntu:~$ ./cli
huangcheng

当我们在键盘敲入几个字符,sendto只是把Buf的数据拷贝到sock对应的缓冲区中,此时服务器未开启,协议栈返回一个ICMP异步错误,但因为前面没有调用connect“建立”一个连接,则recvfrom时不能收到这个错误而一直阻塞。

现在我们在while 循环的外面添加一句:

connect(sock, (struct sockaddr*)&servaddr, sizeof(servaddr));

再次测试一下:

huangcheng@ubuntu:~$ ./cli
huangcheng
recvfrom: Connection refused

此时recvfrom 就能接收到这个错误而返回了,并打印错误提示。

其实connect 并没有真正建立一个连接,即没有3次握手过程,只是维护了一种状态,绑定了远程地址,因为如此在调用sendto 时也可以不指定远程地址了,如 sendto(sock, sendbuf, strlen(sendbuf), 0, NULL, 0);  甚至也可以使用send 函数

send(sock, sendbuf, strlen(sendbuf), 0);

假设现在客户端有多个ip地址,由connect 或 sendto 函数提供的远程地址的参数,系统会选择一个合适的出口,比如远程ip 是192.168.2.10, 而客户端现在的ip 有 192.168.1.32 和 192.168.2.75 那么会自动选择192.168.2.75 这个ip 出去。

UNIX网络编程——基于UDP协议的网络程序的更多相关文章

  1. 网络编程(基于udp协议的套接字/socketserver模块/进程简介)

    一.基于UDP协议的套接字 TCP是建立可靠连接,并且通信双方都可以以流的形式发送数据.相对TCP,UDP则是面向无连接的协议. 使用UDP协议时,不需要建立连接,只需要知道对方的IP地址和端口号,就 ...

  2. JAVA基础知识之网络编程——-基于UDP协议的通信例子

    UDP是一种不可靠的协议,它在通信两端各建立一个socket,这两个socket不会建立持久的通信连接,只会单方面向对方发送数据,不检查发送结果. java中基于UDP协议的通信使用DatagramS ...

  3. 网络编程: 基于UDP协议的socket

    udp是无链接的,启动服务之后可以直接接受消息,不需要提前建立链接 UDP协议的通信优势: 允许一个服务器同时和多个客户端通信, TCP不行 服务端 import socket sk = socket ...

  4. 网络编程——基于TCP协议的Socket编程,基于UDP协议的Socket编程

    Socket编程 目前较为流行的网络编程模型是客户机/服务器通信模式 客户进程向服务器进程发出要求某种服务的请求,服务器进程响应该请求.如图所示,通常,一个服务器进程会同时为多个客户端进程服务,图中服 ...

  5. 基于UDP协议的网络编程

    UDP协议是一种不可靠的网络协议,它在通信实例的两端各建立一个Socket,但这两个Socket之间并没有虚拟链路,这两个Socket只是发送.接收数据报的对象. Java使用DatagramSock ...

  6. 网络编程(UDP协议-聊天程序)

    网络编程中的UDP协议中聊天程序,发送端口,和接受端口. 发送端口(Send): <span style="font-size:18px;">package cn.it ...

  7. java 网络编程基础 UDP协议的Socket:DatagramSocket;广播Socket:MulticastSocket

    什么是UDP协议: UDP协议是一种不可靠的网络协议,它在通信实例的两端各建立一个Socket 但这两个 Socket之间并没有虚拟链路,这两个Socket只是发送.接收数据报的对象.Java 提供了 ...

  8. 基于UDP协议的网络程序

    一.下图是典型的UDP客户端/服务器通讯过程 下面依照通信流程,我们来实现一个UDP回射客户/服务器 #include <sys/types.h>  #include <sys/so ...

  9. 网络编程——基于UDP的网络化CPU性能检测

    网络化计算机性能检测软件的开发,可对指定目标主机的CPU利用率进行远程检测,并自动对远程主机执行性能指标进行周期性检测,最终实现图形化显示检测结果. 网络通信模块:(客户端类似,因为udp是对等通信) ...

随机推荐

  1. python 中常见绘图属性

    fig = plt.figure(facecolor='w')#生成图 ax = fig.add_subplot(111, projection='3d')#绘制子图 ax.scatter(t[0], ...

  2. Linux下实现普通用户免密码登录【超详细】

    现有需求,需要把所有服务器的root和密码登录都禁用,只开放普通用户登录,这时需要给普通用户配置秘钥文件,实现无密码登录 如果普通用户需要root权限,在root用户下执行命令:visudo [roo ...

  3. Java Servlet 笔记4

    Servlet 客户端 HTTP 请求 当浏览器请求网页时,它会向 Web 服务器发送特定信息,这些信息不能被直接读取,因为这些信息是作为 HTTP 请求的头的一部分进行传输的. 读取 HTTP 头的 ...

  4. Requests库介绍

    Requests 是用Python语言编写,基于 urllib,采用 Apache2 Licensed 开源协议的 HTTP 库.它比 urllib 更加方便,可以节约我们大量的工作,完全满足 HTT ...

  5. 备忘:MySQL中修改表中某列的数据类型、删除外键约束

    -- MySQL中修改表中某列的数据类型 ALTER TABLE [COLUMN] 表名 MODIFY 列名 列定义; -- 删除外键约束 SHOW CREATE TABLE 表名; -- 复制CON ...

  6. Java自定义注解的实现

    Java自定义注解的实现,总共三步(eg.@RandomlyThrowsException): 1.首先编写一个自定义注解@RandomlyThrowsException package com.gi ...

  7. jquery easyui datagrid动态改变title的值

    title:'<input type="text" id="txtTitle1" style="background:none;border:n ...

  8. ZH奶酪:Ionic中(弹出式窗口)的$ionicModal使用方法

    Ionic中[弹出式窗口]有两种(如下图所示),$ionicModal和$ionicPopup; $ionicModal是完整的页面: $ionicPopup是(Dialog)对话框样式的,直接用Ja ...

  9. POJ 3050 Hopscotch DFS

    The cows play the child's game of hopscotch in a non-traditional way. Instead of a linear set of num ...

  10. BDD敏捷开发入门与实战

    BDD敏捷开发入门与实战 1.BDD的来由 2003年,Dan North首先提出了BDD的概念,并在随后开发出了JBehave框架.在Dan North博客上介绍BDD的文章中,说到了BDD的想法是 ...