sklearn中有很多经典分类器,使用非常简单:1.导入数据 2.导入模型 3.fit--->predict

下面的示例为在iris数据集上用各种分类器进行分类:

 #用各种方式在iris数据集上数据分类

 #载入iris数据集,其中每个特征向量有四个维度,有三种类别
from sklearn import datasets
iris = datasets.load_iris()
print ("The iris' target names: ",iris.target_names)
x = iris.data
y = iris.target #待分类的两个样本
test_vector = [[1,-1,2.6,-2],[0,0,7,0.8]] #线性回归
from sklearn import linear_model
linear = linear_model.LinearRegression()
linear.fit(x,y)
print ("linear's score: ",linear.score(x,y))
print ("w:",linear.coef_)
print ("b:",linear.intercept_)
print ("predict: ",linear.predict(test_vector)) #逻辑回归
LR = linear_model.LogisticRegression()
LR.fit(x,y)
print ("LogisticRegression:",LR.predict(test_vector)) #决策树
from sklearn import tree
TR = tree.DecisionTreeClassifier(criterion='entropy')
TR.fit(x,y)
print ("DecisionTree:",TR.predict(test_vector)) #支持向量机
from sklearn import svm
SV = svm.SVC()
SV.fit(x,y)
print ("svm:",SV.predict(test_vector)) #朴素贝叶斯
from sklearn import naive_bayes
NB = naive_bayes.GaussianNB()
NB.fit(x,y)
print ("naive_bayes:",NB.predict(test_vector)) #K近邻
from sklearn import neighbors
KNN = neighbors.KNeighborsClassifier(n_neighbors = 3)
KNN.fit(x,y)
print ("KNeighbors:",KNN.predict(test_vector))
'''
he iris' target names: ['setosa' 'versicolor' 'virginica']
linear's score: 0.930422367533
w: [-0.10974146 -0.04424045 0.22700138 0.60989412]
b: 0.192083994828
predict: [-0.50300167 2.26900897]
LogisticRegression: [1 2]
DecisionTree: [1 2]
svm: [2 2]
naive_bayes: [2 2]
KNeighbors: [0 1]
'''

sklearn各种分类器简单使用的更多相关文章

  1. 基于sklearn的分类器实战

    已迁移到我新博客,阅读体验更佳基于sklearn的分类器实战 完整代码实现见github:click me 一.实验说明 1.1 任务描述 1.2 数据说明 一共有十个数据集,数据集中的数据属性有全部 ...

  2. sklearn 组合分类器

    组合分类器: 组合分类器有4种方法: (1)通过处理训练数据集.如baging  boosting (2)通过处理输入特征.如 Random forest (3)通过处理类标号.error_corre ...

  3. sklearn常见分类器的效果比较

    sklearn 是 python 下的机器学习库. scikit-learn的目的是作为一个“黑盒”来工作,即使用户不了解实现也能产生很好的结果. 其功能非常强大,当然也有很多不足的地方,就比如说神经 ...

  4. sklearn机器学习实战-简单线性回归

    记录下学习使用sklearn,将使用sklearn实现机器学习大部分内容 基于scikit-learn机器学习(第2版)这本书,和scikit-learn中文社区 简单线性回归 首先,最简单的线性回归 ...

  5. sklearn常见分类器(二分类模板)

    # -*- coding: utf-8 -*- import pandas as pd import matplotlib matplotlib.rcParams['font.sans-serif'] ...

  6. 机器学习实战 | SKLearn最全应用指南

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/41 本文地址:http://www.showmeai.tech/article-det ...

  7. ZeroR-baseline分类器

    ZeroR分类器是一种最简单的分类器,这种方法仅仅根据历史数据统计规律,而选择一种概率最大的类别作为未知样本的分类结果,也就是说对于任意一个未知样本,分类结果都是一样的.ZeroR分类器简单的以多数类 ...

  8. 安装sklearn过程

    sklearn是scikit-learn的简称,诸多python工具包都需要这个库 安装顺序: wheel numpy scipy sklearn 因为这个库一直安装不好,都没有动力继续深造机器学习了 ...

  9. sklearn模型的属性与功能-【老鱼学sklearn】

    本节主要讲述模型中的各种属性及其含义. 例如上个博文中,我们有用线性回归模型来拟合房价. # 创建线性回归模型 model = LinearRegression() # 训练模型 model.fit( ...

随机推荐

  1. 【Mysql的那些事】数据库之ORM操作

    1:ORM的基础操作(必会) <1> all(): 查询所有结果 <2> filter(**kwargs): 它包含了与所给筛选条件相匹配的对象 <3> get(* ...

  2. 在IDEA中实战Git 合并&提交&切换&创建分支

    工作中多人使用版本控制软件协作开发,常见的应用场景归纳如下: 假设小组中有两个人,组长小张,组员小袁 场景一:小张创建项目并提交到远程Git仓库 场景二:小袁从远程Git仓库上获取项目源码 场景三:小 ...

  3. [linux]jenkins迁移 标签: linux服务器 2016-08-28 21:29 988人阅读 评论(20)

    我们的测试的jenkins和开发的jenkins 是分开的两个jenkins,然后测试的jenkins很久没有用,我们打算把主节点搬到另外一条服务器上面,然后出了一系列的问题,如下: 一.安装jenk ...

  4. php switch判断一个数所在的范围

    <?php header("content-type:text/html;charset=utf8"); $score=70; switch($score) { case $ ...

  5. UVa 10323 【数学】

    UVa 10323 题目:计算阶乘在10000~6227020800之间的值,不在范围对应输出Under或者Over. 分析:简单题.数论.因为13!=6227020800,7!<10000&l ...

  6. @codeforces - 141E@ Clearing Up

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个 N 个点 M 条边的图,每条为黑色或者白色. 现在让你 ...

  7. Linux服务部署:nginx服务 nfs服务

    nginx服务 源码安装: yum install gcc-* glibc-* openssl openssl-devel pcre pcre-devel zlib zlib-devel -ylsta ...

  8. 【阿里云新品发布·周刊】第13期:链路追踪 Tracing Analysis 商业化首发

    点击订阅新品发布会! 新产品.新版本.新技术.新功能.价格调整,评论在下方,下期更新!关注更多内容,了解更多 最新发布 链路追踪 Tracing Analysis 商业化首发 2019年6月12日15 ...

  9. @noi.ac - 488@ cleaner

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 小Q计划在自己的新家中购置一台圆形的扫地机器人.小Q的家中有一个 ...

  10. oracle等式比较和范围比较

    当WHERE子句中有索引列, ORACLE不能合并它们,ORACLE将用范围比较. 举例: DEPTNO上有一个非唯一性索引,EMP_CAT也有一个非唯一性索引. SELECT ENAME FROM ...