[bzoj4872] [洛谷P3750] [六省联考2017] 分手是祝愿
Description
Zeit und Raum trennen dich und mich.
时空将你我分开。
\(B\) 君在玩一个游戏,这个游戏由 \(n\) 个灯和 \(n\) 个开关组成,给定这 \(n\) 个灯的初始状态,下标为
从 1 到 \(n\) 的正整数。每个灯有两个状态亮和灭,我们用 1 来表示这个灯是亮的,用 0 表示这个灯是灭的,游戏
的目标是使所有灯都灭掉。但是当操作第 \(i\) 个开关时,所有编号为 \(i\) 的约数(包括 1 和 \(i\))的灯的状态都会被
改变,即从亮变成灭,或者是从灭变成亮。\(B\) 君发现这个游戏很难,于是想到了这样的一个策略,每次等概率随机
操作一个开关,直到所有灯都灭掉。这个策略需要的操作次数很多, \(B\) 君想到这样的一个优化。如果当前局面,
可以通过操作小于等于 \(k\) 个开关使所有灯都灭掉,那么他将不再随机,直接选择操作次数最小的操作方法(这个
策略显然小于等于 \(k\) 步)操作这些开关。\(B\) 君想知道按照这个策略(也就是先随机操作,最后小于等于 \(k\) 步,使
用操作次数最小的操作方法)的操作次数的期望。这个期望可能很大,但是 \(B\) 君发现这个期望乘以 \(n\) 的阶乘一定
是整数,所以他只需要知道这个整数对 100003 取模之后的结果。
Input
第一行两个整数 \(n, k\)。
接下来一行 \(n\) 个整数,每个整数是 0 或者 1,其中第 \(i\) 个整数表示第 \(i\) 个灯的初始情况。
\(1 \leq n \leq 100000, 0 \leq k \leq n\);
Output
输出一行,为操作次数的期望乘以 \(n\) 的阶乘对 100003 取模之后的结果。
Sample Input
4 0
0 0 1 1
Sample Output
512
想法
又是个小文艺题,原谅我有点激动。。。
首先从 \(n\) 到 \(1\) 扫一遍,哪些灯需要被按1次是可以知道的,而且必须按这些灯。
如果不小心按了其他的灯,就必须再按一次变回来。
神奇的 \(dp\) 方式,设 \(f[i]\) 表示从最少需要按 \(i\) 次的状态变到最少需要按 \(i-1\) 次的状态的期望步数。
随机按一次,按中 \(i\) 个需要按的键之一的概率是 \(\frac{i}{n}\) ,按后变到了至少按 \(i-1\) 次的状态,步数为1
若没有按中需要的键,概率是 \(\frac{n-i}{n}\) , 此时至少需要按 \(i+1\) 个键,应再按 \(f[i+1]\) 次恢复至少按 \(i\) 次的状态,再按 \(f[i]\) 次到至少 \(i-1\) 次的状态,总共步数为 \(1+f[i+1]+f[i]\)
综上所述,可列出式子
\(
f[i]=\frac{i}{n}+\frac{n-i}{n}(1+f[i+1]+f[i])
\)
合并同类项,整理一下得出
\(
f[i]=\frac{n+(n-i)f[i+1]}{i}
\)
边界条件 \(f[n]=1\)
从 \(n\) 往前求 \(f[]\) ,一直求到 \(f[k+1]\)
扫一遍得出原状态至少按的次数 \(t\)
若 \(t \leq k\) ,则总期望值就是 \(t\) ; 否则是 \(k+\sum\limits_{i=k+1}^t f[i]\)
最后别忘了乘以 \(n\) 的阶乘!
代码
#include<cstdio>
#include<iostream>
#include<algorithm>
#define xzy 100003
using namespace std;
const int N = 100005;
typedef long long ll;
int n,k,t;
int a[N];
int Pow_mod(int x,int y){
int ret=1;
while(y){
if(y&1) ret=((ll)ret*x)%xzy;
x=((ll)x*x)%xzy;
y>>=1;
}
return ret;
}
int f[N],inv[N];
int main()
{
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
t=0;
for(int i=n;i>0;i--){
if(!a[i]) continue;
t++;
for(int j=1;j*j<=i;j++)
if(i%j==0){
a[j]^=1;
if(j*j!=i) a[i/j]^=1;
}
}
inv[1]=1;
for(int i=2;i<=n;i++) inv[i]=xzy-1ll*(xzy/i)*inv[xzy%i]%xzy;
int ans=k;
f[n]=1;
for(int i=n-1;i>k;i--)
f[i]=(1ll*(n-i)*f[i+1]%xzy+n)%xzy*inv[i]%xzy;
if(t<=k) ans=t;
else for(int i=k+1;i<=t;i++) ans=(ans+f[i])%xzy;
for(int i=2;i<=n;i++) ans=((ll)ans*i)%xzy;
printf("%d\n",ans);
return 0;
}
[bzoj4872] [洛谷P3750] [六省联考2017] 分手是祝愿的更多相关文章
- 洛谷P3750 [六省联考2017]分手是祝愿(期望dp)
传送门 嗯……概率期望这东西太神了…… 先考虑一下最佳方案,肯定是从大到小亮的就灭(这个仔细想一想应该就能发现) 那么直接一遍枚举就能$O(nlogn)$把这个东西给搞出来 然后考虑期望dp,设$f[ ...
- 洛谷 P3750 [六省联考2017]分手是祝愿
传送门 题解 //Achen #include<algorithm> #include<iostream> #include<cstring> #include&l ...
- 洛谷 P3750 - [六省联考2017]分手是祝愿(期望 dp)
题面传送门 首先我们需注意到这样一个性质:那就是对于任何一种状态,将其变为全 \(0\) 所用的最小步数的方案是唯一的--考虑编号为 \(n\) 的灯,显然如果它原本是暗着的就不用管它了,如果它是亮着 ...
- BZOJ 4872 luogu P3750 [六省联考2017]分手是祝愿
4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description ...
- P3750 [六省联考2017]分手是祝愿 期望DP
\(\color{#0066ff}{ 题目描述 }\) Zeit und Raum trennen dich und mich. 时空将你我分开. B 君在玩一个游戏,这个游戏由 \(n\) 个灯和 ...
- luogu P3750 [六省联考2017]分手是祝愿
luogu loj 可以发现在最优策略中,每种操作最多只会做一次,并且操作的先后顺序并不会影响答案,所以考虑从后往前扫,碰到一个\(1\)就对这个位置\(i\)进行操作,这样的操作一定是最优策略.记最 ...
- 洛谷 P3747 [六省联考2017]相逢是问候 解题报告
P3747 [六省联考2017]相逢是问候 题目描述 \(\text {Informatik verbindet dich und mich.}\) 信息将你我连结. \(B\) 君希望以维护一个长度 ...
- [BZOJ4872][六省联考2017]分手是祝愿(期望DP)
4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 516 Solved: 342[Submit][Statu ...
- bzoj千题计划266:bzoj4872: [六省联考2017]分手是祝愿
http://www.lydsy.com/JudgeOnline/problem.php?id=4872 一种最优解是 从大到小灯有亮的就灭掉 最优解是唯一的,且关灯的顺序没有影响 最优解 对每个开关 ...
随机推荐
- Java基础系列8——IO流超详细总结
该系列博文会告诉你如何从入门到进阶,一步步地学习Java基础知识,并上手进行实战,接着了解每个Java知识点背后的实现原理,更完整地了解整个Java技术体系,形成自己的知识框架. 在初学Java时,I ...
- 【2016常州一中夏令营Day5】
小 W 拼图[问题描述]小 W 和小 M 一起玩拼图游戏啦~小 M 给小 M 一张 N 个点的图,有 M 条可选无向边,每条边有一个甜蜜值,小 W 要选K 条边,使得任意两点间最多有一条路径,并且选择 ...
- Vue.js provide / inject 踩坑
最近学习JavaScript,并且使用vuejs,第一次使用依赖注入,结果踩坑,差点把屏幕摔了..始终获取不到如组件的属性,provide中的this对象始终是子组件的this对象 慢慢也摸索到了些v ...
- c++修改系统环境变量 (修改注册表以后,立刻使用SendMessageTimeout(HWND_BROADCAST进行广播)
#include "stdafx.h" #include "addPath.h" #define _AFXDLL #include <afxwin.h&g ...
- Android1_运行第一个AS项目HelloWorld
一.开发安卓程序需要具备一些开发工具,这里简单罗列一下: JDK :这是Java语言的开发工具包,包含了Java的运行环境.工具集合.基础类库等内容. Android Studio:目前主流的安卓开发 ...
- HMaster/HRegion Server 工作原理
1.HBase系统架构 2. HRegion Sever架构图 0.94之前的版本 0.96+的版本 WAL: 即Write Ahead Log, 是HDFS上一个文件,早期版本中称为 ...
- 抽象类(abstract class)和接口(interface)有什么区别?
抽象类中可以有构造器.抽象方法.具体方法.静态方法.各种成员变量,有抽象方法的类一定要被声明为抽象类,而抽象类不一定要有抽象方法,一个类只能继承一个抽象类. 接口中不能有构造器.只能有public修饰 ...
- mysql主从之配置验证
实验环境: master 192.168.132.121 主库 slave 192.168.132.122 从库 一 mysql主从复制的配置 1.1 mysql主库给从库复制的权限 mys ...
- 精选腾讯技术干货200+篇,云加社区全年沙龙PPT免费下载!
2019年已经过去,小编为大家整理了这一年以来云加社区发布的 200多篇腾讯干货,点击文章标题即可跳转到原文,请速速收藏哦~ 看腾讯技术: 腾讯成本优化黑科技:整机CPU利用率最高提升至90%: 腾讯 ...
- iOS获取网络数据/路径中的文件名
NSString * urlString = @"http://www.baidu.com/img/baidu_logo_fqj_10.gif"; //方法一:最直接 NSStri ...