Spark内核泛指Spark的核心运行机制,包括Spark核心组件的运行机制、Spark任务调度机制、Spark内存管理机制、Spark核心功能的运行原理等,熟练掌握Spark内核原理,能够帮助我们更好地完成Spark代码设计,并能够帮助我们准确锁定项目运行过程中出现的问题的症结所在。

Spark 内核概述

Spark 核心组件回顾

Driver

Spark驱动器节点,用于执行Spark任务中的main方法,负责实际代码的执行工作。Driver在Spark作业执行时主要负责:

  1. 将用户程序转化为作业(job);
  2. 在Executor之间调度任务(task);
  3. 跟踪Executor的执行情况;
  4. 通过UI展示查询运行情况;

Executor

Spark Executor节点是一个JVM进程,负责在 Spark 作业中运行具体任务,任务彼此之间相互独立。Spark 应用启动时,Executor节点被同时启动,并且始终伴随着整个 Spark 应用的生命周期而存在。如果有Executor节点发生了故障或崩溃,Spark 应用也可以继续执行,会将出错节点上的任务调度到其他Executor节点上继续运行。

Executor有两个核心功能:

  1. 负责运行组成Spark应用的任务,并将结果返回给驱动器进程;
  2. 它们通过自身的块管理器(Block Manager)为用户程序中要求缓存的 RDD 提供内存式存储。RDD 是直接缓存在Executor进程内的,因此任务可以在运行时充分利用缓存数据加速运算。

Spark 通用运行流程概述


图为Spark通用运行流程,不论Spark以何种模式进行部署,任务提交后,都会先启动Driver进程,随后Driver进程向集群管理器注册应用程序,之后集群管理器根据此任务的配置文件分配Executor并启动,当Driver所需的资源全部满足后,Driver开始执行main函数,Spark查询为懒执行,当执行到action算子时开始反向推算,根据宽依赖进行stage的划分,随后每一个stage对应一个taskset,taskset中有多个task,根据本地化原则,task会被分发到指定的Executor去执行,在任务执行的过程中,Executor也会不断与Driver进行通信,报告任务运行情况。

Spark 部署模式

Spark支持3种集群管理器(Cluster Manager),分别为:

  1. Standalone:独立模式,Spark原生的简单集群管理器,自带完整的服务,可单独部署到一个集群中,无需依赖任何其他资源管理系统,使用Standalone可以很方便地搭建一个集群;
  2. Apache Mesos:一个强大的分布式资源管理框架,它允许多种不同的框架部署在其上,包括yarn;
  3. Hadoop YARN:统一的资源管理机制,在上面可以运行多套计算框架,如map reduce、storm等,根据driver在集群中的位置不同,分为yarn client和yarn cluster。
    实际上,除了上述这些通用的集群管理器外,Spark内部也提供了一些方便用户测试和学习的简单集群部署模式。由于在实际工厂环境下使用的绝大多数的集群管理器是Hadoop YARN,因此我们关注的重点是Hadoop YARN模式下的Spark集群部署。
    Spark的运行模式取决于传递给SparkContext的MASTER环境变量的值,个别模式还需要辅助的程序接口来配合使用,目前支持的Master字符串及URL包括:
Master URL Meaning
local 在本地运行,只有一个工作进程,无并行计算能力。
local[K] 在本地运行,有K个工作进程,通常设置K为机器的CPU核心数量。
local[*] 在本地运行,工作进程数量等于机器的CPU核心数量。
spark://HOST:PORT 以Standalone模式运行,这是Spark自身提供的集群运行模式,默认端口号: 7077。详细文档见:Spark standalone cluster。
mesos://HOST:PORT 在Mesos集群上运行,Driver进程和Worker进程运行在Mesos集群上,部署模式必须使用固定值:--deploy-mode cluster。详细文档见:MesosClusterDispatcher.
yarn-client 在Yarn集群上运行,Driver进程在本地,Executor进程在Yarn集群上,部署模式必须使用固定值:--deploy-mode client。Yarn集群地址必须在HADOOP_CONF_DIR or YARN_CONF_DIR变量里定义。
yarn-cluster 在Yarn集群上运行,Driver进程在Yarn集群上,Work进程也在Yarn集群上,部署模式必须使用固定值:--deploy-mode cluster。Yarn集群地址必须在HADOOP_CONF_DIR or YARN_CONF_DIR变量里定义。

用户在提交任务给Spark处理时,以下两个参数共同决定了Spark的运行方式。
· –master MASTER_URL :决定了Spark任务提交给哪种集群处理。
· –deploy-mode DEPLOY_MODE:决定了Driver的运行方式,可选值为Client或者Cluster。

Standalone 模式运行机制

Standalone集群有四个重要组成部分,分别是:

1) Driver:是一个进程,我们编写的Spark应用程序就运行在Driver上,由Driver进程执行;
2) Master(RM):是一个进程,主要负责资源的调度和分配,并进行集群的监控等职责;
3) Worker(NM):是一个进程,一个Worker运行在集群中的一台服务器上,主要负责两个职责,一个是用自己的内存存储RDD的某个或某些partition;另一个是启动其他进程和线程(Executor),对RDD上的partition进行并行的处理和计算。
4) Executor:是一个进程,一个Worker上可以运行多个Executor,Executor通过启动多个线程(task)来执行对RDD的partition进行并行计算,也就是执行我们对RDD定义的例如map、flatMap、reduce等算子操作。

Standalone Client 模式

在Standalone Client模式下,Driver在任务提交的本地机器上运行,Driver启动后向Master注册应用程序,Master根据submit脚本的资源需求找到内部资源至少可以启动一个Executor的所有Worker,然后在这些Worker之间分配Executor,Worker上的Executor启动后会向Driver反向注册,所有的Executor注册完成后,Driver开始执行main函数,之后执行到Action算子时,开始划分stage,每个stage生成对应的taskSet,之后将task分发到各个Executor上执行。

Standalone Cluster模式


在Standalone Cluster模式下,任务提交后,Master会找到一个Worker启动Driver进程, Driver启动后向Master注册应用程序,Master根据submit脚本的资源需求找到内部资源至少可以启动一个Executor的所有Worker,然后在这些Worker之间分配Executor,Worker上的Executor启动后会向Driver反向注册,所有的Executor注册完成后,Driver开始执行main函数,之后执行到Action算子时,开始划分stage,每个stage生成对应的taskSet,之后将task分发到各个Executor上执行。
注意
Standalone的两种模式下(client/Cluster),Master在接到Driver注册Spark应用程序的请求后,会获取其所管理的剩余资源能够启动一个Executor的所有Worker,然后在这些Worker之间分发Executor,此时的分发只考虑Worker上的资源是否足够使用,直到当前应用程序所需的所有Executor都分配完毕,Executor反向注册完毕后,Driver开始执行main程序。

Yarn 模式运行机制

Yarn Client 模式


在YARN Client模式下,Driver在任务提交的本地机器上运行,Driver启动后会和ResourceManager通讯申请启动ApplicationMaster,随后ResourceManager分配container,在合适的NodeManager上启动ApplicationMaster,此时的ApplicationMaster的功能相当于一个ExecutorLaucher,只负责向ResourceManager申请Executor内存。

ResourceManager接到ApplicationMaster的资源申请后会分配container,然后ApplicationMaster在资源分配指定的NodeManager上启动Executor进程,Executor进程启动后会向Driver反向注册,Executor全部注册完成后Driver开始执行main函数,之后执行到Action算子时,触发一个job,并根据宽依赖开始划分stage,每个stage生成对应的taskSet,之后将task分发到各个Executor上执行。

Yarn Cluster 模式

在YARN Cluster模式下,任务提交后会和ResourceManager通讯申请启动ApplicationMaster,随后ResourceManager分配container,在合适的NodeManager上启动ApplicationMaster,此时的ApplicationMaster就是Driver。

Driver启动后向ResourceManager申请Executor内存,ResourceManager接到ApplicationMaster的资源申请后会分配container,然后在合适的NodeManager上启动Executor进程,Executor进程启动后会向Driver反向注册,Executor全部注册完成后Driver开始执行main函数,之后执行到Action算子时,触发一个job,并根据宽依赖开始划分stage,每个stage生成对应的taskSet,之后将task分发到各个Executor上执行。

Spark 通讯架构

Spark 通信架构概述

Spark2.x版本使用Netty通讯框架作为内部通讯组件。spark 基于netty新的rpc框架借鉴了Akka的中的设计,它是基于Actor模型,如下图所示:

Spark通讯框架中各个组件(Client/Master/Worker)可以认为是一个个独立的实体,各个实体之间通过消息来进行通信。具体各个组件之间的关系图如下:

Endpoint(Client/Master/Worker)有1个InBox和N个OutBox(N>=1,N取决于当前Endpoint与多少其他的Endpoint进行通信,一个与其通讯的其他Endpoint对应一个OutBox),Endpoint接收到的消息被写入InBox,发送出去的消息写入OutBox并被发送到其他Endpoint的InBox中。

Spark 通讯架构解析

Spark通信架构如下图所示:

1) RpcEndpoint:RPC端点,Spark针对每个节点(Client/Master/Worker)都称之为一个Rpc端点,且都实现RpcEndpoint接口,内部根据不同端点的需求,设计不同的消息和不同的业务处理,如果需要发送(询问)则调用Dispatcher;
2) RpcEnv:RPC上下文环境,每个RPC端点运行时依赖的上下文环境称为RpcEnv;
3) Dispatcher:消息分发器,针对于RPC端点需要发送消息或者从远程RPC接收到的消息,分发至对应的指令收件箱/发件箱。如果指令接收方是自己则存入收件箱,如果指令接收方不是自己,则放入发件箱;
4) Inbox:指令消息收件箱,一个本地RpcEndpoint对应一个收件箱,Dispatcher在每次向Inbox存入消息时,都将对应EndpointData加入内部ReceiverQueue中,另外Dispatcher创建时会启动一个单独线程进行轮询ReceiverQueue,进行收件箱消息消费;
5) RpcEndpointRef:RpcEndpointRef是对远程RpcEndpoint的一个引用。当我们需要向一个具体的RpcEndpoint发送消息时,一般我们需要获取到该RpcEndpoint的引用,然后通过该应用发送消息。
6) OutBox:指令消息发件箱,对于当前RpcEndpoint来说,一个目标RpcEndpoint对应一个发件箱,如果向多个目标RpcEndpoint发送信息,则有多个OutBox。当消息放入Outbox后,紧接着通过TransportClient将消息发送出去。消息放入发件箱以及发送过程是在同一个线程中进行;
7) RpcAddress:表示远程的RpcEndpointRef的地址,Host + Port。
8) TransportClient:Netty通信客户端,一个OutBox对应一个TransportClient,TransportClient不断轮询OutBox,根据OutBox消息的receiver信息,请求对应的远程TransportServer;
9) TransportServer:Netty通信服务端,一个RpcEndpoint对应一个TransportServer,接受远程消息后调用Dispatcher分发消息至对应收发件箱;
根据上面的分析,Spark通信架构的高层视图如下图所示:

Spark 任务调度机制

在工厂环境下,Spark集群的部署方式一般为YARN-Cluster模式,之后的内核分析内容中我们默认集群的部署方式为YARN-Cluster模式。

Spark 任务提交流程


下面的时序图清晰地说明了一个Spark应用程序从提交到运行的完整流程:

提交一个Spark应用程序,首先通过Client向ResourceManager请求启动一个Application,同时检查是否有足够的资源满足Application的需求,如果资源条件满足,则准备ApplicationMaster的启动上下文,交给ResourceManager,并循环监控Application状态。

当提交的资源队列中有资源时,ResourceManager会在某个NodeManager上启动ApplicationMaster进程,ApplicationMaster会单独启动Driver后台线程,当Driver启动后,ApplicationMaster会通过本地的RPC连接Driver,并开始向ResourceManager申请Container资源运行Executor进程(一个Executor对应与一个Container),当ResourceManager返回Container资源,ApplicationMaster则在对应的Container上启动Executor。

Driver线程主要是初始化SparkContext对象,准备运行所需的上下文,然后一方面保持与ApplicationMaster的RPC连接,通过ApplicationMaster申请资源,另一方面根据用户业务逻辑开始调度任务,将任务下发到已有的空闲Executor上。

当ResourceManager向ApplicationMaster返回Container资源时,ApplicationMaster就尝试在对应的Container上启动Executor进程,Executor进程起来后,会向Driver反向注册,注册成功后保持与Driver的心跳,同时等待Driver分发任务,当分发的任务执行完毕后,将任务状态上报给Driver。

从上述时序图可知,Client只负责提交Application并监控Application的状态。对于Spark的任务调度主要是集中在两个方面: 资源申请和任务分发,其主要是通过ApplicationMaster、Driver以及Executor之间来完成。

Spark 任务调度概述

当Driver起来后,Driver则会根据用户程序逻辑准备任务,并根据Executor资源情况逐步分发任务。在详细阐述任务调度前,首先说明下Spark里的几个概念。一个Spark应用程序包括Job、Stage以及Task三个概念:
 Job是以Action方法为界,遇到一个Action方法则触发一个Job;
 Stage是Job的子集,以RDD宽依赖(即Shuffle)为界,遇到Shuffle做一次划分;
 Task是Stage的子集,以并行度(分区数)来衡量,分区数是多少,则有多少个task。
Spark的任务调度总体来说分两路进行,一路是Stage级的调度,一路是Task级的调度,总体调度流程如下图所示:

Spark RDD通过其Transactions操作,形成了RDD血缘关系图,即DAG,最后通过Action的调用,触发Job并调度执行。DAGScheduler负责Stage级的调度,主要是将job切分成若干Stages,并将每个Stage打包成TaskSet交给TaskScheduler调度。TaskScheduler负责Task级的调度,将DAGScheduler给过来的TaskSet按照指定的调度策略分发到Executor上执行,调度过程中SchedulerBackend负责提供可用资源,其中SchedulerBackend有多种实现,分别对接不同的资源管理系统。有了上述感性的认识后,下面这张图描述了Spark-On-Yarn模式下在任务调度期间,ApplicationMaster、Driver以及Executor内部模块的交互过程:

Driver初始化SparkContext过程中,会分别初始化DAGScheduler、TaskScheduler、SchedulerBackend以及HeartbeatReceiver,并启动SchedulerBackend以及HeartbeatReceiver。SchedulerBackend通过ApplicationMaster申请资源,并不断从TaskScheduler中拿到合适的Task分发到Executor执行。HeartbeatReceiver负责接收Executor的心跳信息,监控Executor的存活状况,并通知到TaskScheduler。

Spark Stage级调度

Spark的任务调度是从DAG切割开始,主要是由DAGScheduler来完成。当遇到一个Action操作后就会触发一个Job的计算,并交给DAGScheduler来提交,下图是涉及到Job提交的相关方法调用流程图。

Job由最终的RDD和Action方法封装而成,SparkContext将Job交给DAGScheduler提交,它会根据RDD的血缘关系构成的DAG进行切分,将一个Job划分为若干Stages,具体划分策略是,由最终的RDD不断通过依赖回溯判断父依赖是否是宽依赖,即以Shuffle为界,划分Stage,窄依赖的RDD之间被划分到同一个Stage中,可以进行pipeline式的计算,如上图紫色流程部分。划分的Stages分两类,一类叫做ResultStage,为DAG最下游的Stage,由Action方法决定,另一类叫做ShuffleMapStage,为下游Stage准备数据,下面看一个简单的例子WordCount。

Job由saveAsTextFile触发,该Job由RDD-3和saveAsTextFile方法组成,根据RDD之间的依赖关系从RDD-3开始回溯搜索,直到没有依赖的RDD-0,在回溯搜索过程中,RDD-3依赖RDD-2,并且是宽依赖,所以在RDD-2和RDD-3之间划分Stage,RDD-3被划到最后一个Stage,即ResultStage中,RDD-2依赖RDD-1,RDD-1依赖RDD-0,这些依赖都是窄依赖,所以将RDD-0、RDD-1和RDD-2划分到同一个Stage,即ShuffleMapStage中,实际执行的时候,数据记录会一气呵成地执行RDD-0到RDD-2的转化。不难看出,其本质上是一个深度优先搜索算法。

一个Stage是否被提交,需要判断它的父Stage是否执行,只有在父Stage执行完毕才能提交当前Stage,如果一个Stage没有父Stage,那么从该Stage开始提交。Stage提交时会将Task信息(分区信息以及方法等)序列化并被打包成TaskSet交给TaskScheduler,一个Partition对应一个Task,另一方面TaskScheduler会监控Stage的运行状态,只有Executor丢失或者Task由于Fetch失败才需要重新提交失败的Stage以调度运行失败的任务,其他类型的Task失败会在TaskScheduler的调度过程中重试。

相对来说DAGScheduler做的事情较为简单,仅仅是在Stage层面上划分DAG,提交Stage并监控相关状态信息。TaskScheduler则相对较为复杂,下面详细阐述其细节。

Spark Task 级调度

Spark Task的调度是由TaskScheduler来完成,由前文可知,DAGScheduler将Stage打包到TaskSet交给TaskScheduler,TaskScheduler会将TaskSet封装为TaskSetManager加入到调度队列中,TaskSetManager结构如下图所示。

TaskSetManager负责监控管理同一个Stage中的Tasks,TaskScheduler就是以TaskSetManager为单元来调度任务。

前面也提到,TaskScheduler初始化后会启动SchedulerBackend,它负责跟外界打交道,接收Executor的注册信息,并维护Executor的状态,所以说SchedulerBackend是管“粮食”的,同时它在启动后会定期地去“询问”TaskScheduler有没有任务要运行,也就是说,它会定期地“问”TaskScheduler“我有这么余量,你要不要啊”,TaskScheduler在SchedulerBackend“问”它的时候,会从调度队列中按照指定的调度策略选择TaskSetManager去调度运行,大致方法调用流程如下图所示:

将TaskSetManager加入rootPool调度池中之后,调用SchedulerBackend的riviveOffers方法给driverEndpoint发送ReviveOffer消息;driverEndpoint收到ReviveOffer消息后调用makeOffers方法,过滤出活跃状态的Executor(这些Executor都是任务启动时反向注册到Driver的Executor),然后将Executor封装成WorkerOffer对象;准备好计算资源(WorkerOffer)后,taskScheduler基于这些资源调用resourceOffer在Executor上分配task。

调度策略

前面讲到,TaskScheduler会先把DAGScheduler给过来的TaskSet封装成TaskSetManager扔到任务队列里,然后再从任务队列里按照一定的规则把它们取出来在SchedulerBackend给过来的Executor上运行。这个调度过程实际上还是比较粗粒度的,是面向TaskSetManager的。
TaskScheduler是以树的方式来管理任务队列,树中的节点类型为Schdulable,叶子节点为TaskSetManager,非叶子节点为Pool,下图是它们之间的继承关系。

TaskScheduler支持两种调度策略,一种是FIFO,也是默认的调度策略,另一种是FAIR。在TaskScheduler初始化过程中会实例化rootPool,表示树的根节点,是Pool类型。

FIFO调度策略

如果是采用FIFO调度策略,则直接简单地将TaskSetManager按照先来先到的方式入队,出队时直接拿出最先进队的TaskSetManager,其树结构如下图所示,TaskSetManager保存在一个FIFO队列中。

FAIR 调度策略

FAIR调度策略的树结构如下图所示:

FAIR模式中有一个rootPool和多个子Pool,各个子Pool中存储着所有待分配的TaskSetMagager。
在FAIR模式中,需要先对子Pool进行排序,再对子Pool里面的TaskSetMagager进行排序,因为Pool和TaskSetMagager都继承了Schedulable特质,因此使用相同的排序算法。
排序过程的比较是基于Fair-share来比较的,每个要排序的对象包含三个属性: runningTasks值(正在运行的Task数)、minShare值、weight值,比较时会综合考量runningTasks值,minShare值以及weight值。
注意,minShare、weight的值均在公平调度配置文件fairscheduler.xml中被指定,调度池在构建阶段会读取此文件的相关配置。

1) 如果A对象的runningTasks大于它的minShare,B对象的runningTasks小于它的minShare,那么B排在A前面;(runningTasks比minShare小的先执行)
2) 如果A、B对象的runningTasks都小于它们的minShare,那么就比较runningTasks与minShare的比值(minShare使用率),谁小谁排前面;(minShare使用率低的先执行)
3) 如果A、B对象的runningTasks都大于它们的minShare,那么就比较runningTasks与weight的比值(权重使用率),谁小谁排前面。(权重使用率低的先执行)
4) 如果上述比较均相等,则比较名字。
整体上来说就是通过minShare和weight这两个参数控制比较过程,可以做到让minShare使用率和权重使用率少(实际运行task比例较少)的先运行。
FAIR模式排序完成后,所有的TaskSetManager被放入一个ArrayBuffer里,之后依次被取出并发送给Executor执行。
从调度队列中拿到TaskSetManager后,由于TaskSetManager封装了一个Stage的所有Task,并负责管理调度这些Task,那么接下来的工作就是TaskSetManager按照一定的规则一个个取出Task给TaskScheduler,TaskScheduler再交给SchedulerBackend去发到Executor上执行。

本地化调度

DAGScheduler切割Job,划分Stage, 通过调用submitStage来提交一个Stage对应的tasks,submitStage会调用submitMissingTasks,submitMissingTasks 确定每个需要计算的 task 的preferredLocations,通过调用getPreferrdeLocations()得到partition 的优先位置,由于一个partition对应一个task,此partition的优先位置就是task的优先位置,对于要提交到TaskScheduler的TaskSet中的每一个task,该task优先位置与其对应的partition对应的优先位置一致。

从调度队列中拿到TaskSetManager后,那么接下来的工作就是TaskSetManager按照一定的规则一个个取出task给TaskScheduler,TaskScheduler再交给SchedulerBackend去发到Executor上执行。前面也提到,TaskSetManager封装了一个Stage的所有task,并负责管理调度这些task。

根据每个task的优先位置,确定task的Locality级别,Locality一共有五种,优先级由高到低顺序:

名称 解析
PROCESS_LOCAL 进程本地化,task和数据在同一个Executor中,性能最好。
NODE_LOCAL 节点本地化,task和数据在同一个节点中,但是task和数据不在同一个Executor中,数据需要在进程间进行传输。
RACK_LOCAL 机架本地化,task和数据在同一个机架的两个节点上,数据需要通过网络在节点之间进行传输。
NO_PREF 对于task来说,从哪里获取都一样,没有好坏之分。
ANY task和数据可以在集群的任何地方,而且不在一个机架中,性能最差。

在调度执行时,Spark调度总是会尽量让每个task以最高的本地性级别来启动,当一个task以X本地性级别启动,但是该本地性级别对应的所有节点都没有空闲资源而启动失败,此时并不会马上降低本地性级别启动而是在某个时间长度内再次以X本地性级别来启动该task,若超过限时时间则降级启动,去尝试下一个本地性级别,依次类推。

可以通过调大每个类别的最大容忍延迟时间,在等待阶段对应的Executor可能就会有相应的资源去执行此task,这就在在一定程度上提到了运行性能。

失败重试与黑名单机制

除了选择合适的Task调度运行外,还需要监控Task的执行状态,前面也提到,与外部打交道的是SchedulerBackend,Task被提交到Executor启动执行后,Executor会将执行状态上报给SchedulerBackend,SchedulerBackend则告诉TaskScheduler,TaskScheduler找到该Task对应的TaskSetManager,并通知到该TaskSetManager,这样TaskSetManager就知道Task的失败与成功状态,对于失败的Task,会记录它失败的次数,如果失败次数还没有超过最大重试次数,那么就把它放回待调度的Task池子中,否则整个Application失败。

在记录Task失败次数过程中,会记录它上一次失败所在的Executor Id和Host,这样下次再调度这个Task时,会使用黑名单机制,避免它被调度到上一次失败的节点上,起到一定的容错作用。黑名单记录Task上一次失败所在的Executor Id和Host,以及其对应的“拉黑”时间,“拉黑”时间是指这段时间内不要再往这个节点上调度这个Task了。

【Spark 内核】 Spark 内核解析-上的更多相关文章

  1. Linux内核:sk_buff解析

    sk_buff 目录 1 sk_buff介绍 2 sk_buff组成 3 struct sk_buff 结构体 4 sk_buff成员变量 4.1 Layout布局 4.2 General通用 4.3 ...

  2. 大数据技术之_19_Spark学习_03_Spark SQL 应用解析 + Spark SQL 概述、解析 、数据源、实战 + 执行 Spark SQL 查询 + JDBC/ODBC 服务器

    第1章 Spark SQL 概述1.1 什么是 Spark SQL1.2 RDD vs DataFrames vs DataSet1.2.1 RDD1.2.2 DataFrame1.2.3 DataS ...

  3. 大数据技术之_19_Spark学习_05_Spark GraphX 应用解析 + Spark GraphX 概述、解析 + 计算模式 + Pregel API + 图算法参考代码 + PageRank 实例

    第1章 Spark GraphX 概述1.1 什么是 Spark GraphX1.2 弹性分布式属性图1.3 运行图计算程序第2章 Spark GraphX 解析2.1 存储模式2.1.1 图存储模式 ...

  4. 【转载】linux2.6内核initrd机制解析

    题记 很久之前就分析过这部分内容,但是那个时候不够深入,姑且知道这么个东西存在,到底怎么用,来龙去脉咋回事就不知道了.前段时间工作上遇到了一个initrd的问题,没办法只能再去研究研究,还好,有点眉目 ...

  5. Spark MLlib LDA 源代码解析

    1.Spark MLlib LDA源代码解析 http://blog.csdn.net/sunbow0 Spark MLlib LDA 应该算是比較难理解的,当中涉及到大量的概率与统计的相关知识,并且 ...

  6. linux内核驱动module_init解析(2)

    本文转载自博客http://blog.csdn.net/u013216061/article/details/72511653 如果了解过Linux操作系统启动流程,那么当bootloader加载完k ...

  7. Spark in action on Kubernetes - Spark Operator的原理解析

    前言 在上篇文章中,向大家介绍了如何使用Spark Operator在kubernetes集群上面提交一个计算作业.今天我们会继续使用上篇文章中搭建的Playground进行调试与解析,帮助大家更深入 ...

  8. [转]Spark SQL2.X 在100TB上的Adaptive execution(自适应执行)实践

    Spark SQL是Apache Spark最广泛使用的一个组件,它提供了非常友好的接口来分布式处理结构化数据,在很多应用领域都有成功的生产实践,但是在超大规模集群和数据集上,Spark SQL仍然遇 ...

  9. Spark SQL源码解析(三)Analysis阶段分析

    Spark SQL原理解析前言: Spark SQL源码剖析(一)SQL解析框架Catalyst流程概述 Spark SQL源码解析(二)Antlr4解析Sql并生成树 Analysis阶段概述 首先 ...

  10. Spark SQL源码解析(四)Optimization和Physical Planning阶段解析

    Spark SQL原理解析前言: Spark SQL源码剖析(一)SQL解析框架Catalyst流程概述 Spark SQL源码解析(二)Antlr4解析Sql并生成树 Spark SQL源码解析(三 ...

随机推荐

  1. 【转载】.NET中使用Redis

    Redis是一个用的比较广泛的Key/Value的内存数据库,新浪微博.Github.StackOverflow 等大型应用中都用其作为缓存,Redis的官网为http://redis.io/. 最近 ...

  2. 机器学习-RBF高斯核函数处理

     机器学习-RBF高斯核函数处理 SVM高斯核函数-RBF优化 重要了解数学的部分: 协方差矩阵,高斯核函数公式. 个人建议具体的求法还是看下面的核心代码吧,更好理解,反正就我个人而言,烦躁的公式,还 ...

  3. servicemix-3.2.1 部署异常

    <jbi-task xmlns="http://java.sun.com/xml/ns/jbi/management-message" version="1.0&q ...

  4. pytorch中如何处理RNN输入变长序列padding

    一.为什么RNN需要处理变长输入 假设我们有情感分析的例子,对每句话进行一个感情级别的分类,主体流程大概是下图所示: 思路比较简单,但是当我们进行batch个训练数据一起计算的时候,我们会遇到多个训练 ...

  5. H3C ACL规则的匹配顺序

  6. 判断当前所使用python的版本和来源

    import sys print(sys.prefix) print(sys.executable) 怎样判断当前py文件在什么版本的python环境下运行 import sys print(sys. ...

  7. 【codeforces 761B】Dasha and friends

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  8. 如何用for..of.. 遍历一个普通的对象?

    如何用for..of.. 遍历一个普通的对象? 首先了解一下for..of..: 它是es6新增的一个遍历方法,但只限于迭代器(iterator), 所以普通的对象用for..of遍历 是会报错的.下 ...

  9. vc得到屏幕的当前分辨率方法

    vc得到屏幕的当前分辨率方法:1.Windows API调用int width = GetSystemMetrics ( SM_CXSCREEN ); int height= GetSystemMet ...

  10. JS 手札记

    addEventListener中的事件如果移除(removeEventListener)的话不能在事件中执行bind(this)否则会移除无效! // selectCurrent() // copy ...