李宏毅机器学习课程---2、Regression - Case Study
李宏毅机器学习课程---2、Regression - Case Study
一、总结
一句话总结:
分类讨论可能是比较好的找最佳函数的方法:如果 有这样的因素存在的话
模型不够好,可能是因素没有找全
因素以及函数的复杂度,并不是越高越好,适合的才是最好的
1、AI训练师的工作是什么?
为机器挑选【合适的model 和 loss function】,不同的model和loss function,来适合解决不同的问题
loss
英 [lɒs] 美 [lɔs]
n. 减少;亏损;失败;遗失
n. (Loss)人名;(匈)洛什;(法、德、意)洛斯
[ 复数 losses ]
2、如何理解“要训练出厉害的AI,AI训练师功不可没”?
AI训练师为机器挑选【合适的model 和 loss function】,不同的model和loss function,来适合解决不同的问题
3、机器学习要做的就是找一个function,那Regression要做的是什么?
找一个scalar(output a scalar):就是输出一个数值,比如自动驾驶汽车:f(无人车上的各个传感器)= 方向盘的角度,比如90度
4、Regression的实际例子有哪些?
Stock Market Forecast(股票市场预测):f(过去股票市场的变动)= Dow Jones Industrial Average at tomorrow
Self-driving car(自动驾驶汽车):f(无人车上的各个传感器)= 方向盘的角度
Recommendation(推荐):f(使用者A的种种特性 + 商品B的种种特性)= 购买可能性
Estimating the Combat Power(CP) of a pokemon after evolution(评估宝可梦的进化之后的战斗能力):f(进化前的宝可梦的各种属性)= CP after evolution
5、Regression函数是怎么建模的(变量命名规则)?
|||-begin
Estimating the Combat Power(CP) of a pokemon after evolution(评估宝可梦的进化之后的战斗能力):f(进化前的宝可梦的各种属性)= CP after evolution
|||-end
x加下标表示各种输入:进化前的宝可梦的各种属性:用x加下标表示,比如Xw表示重量,Xh表示高度,Xcp表示战斗力等等
y表示输出
6、机器学习中的模型是什么意思?
就是一组函数:a set of function; 比如 【线性模型】 y=b+w*Xcp中,不同的b和w就代表了不同的函数
比如精灵宝可梦进化后战斗力变化: y=b+w*Xcp
7、机器学习中的线性模型长什么样?
y=b+求和符号WiXi
b:bias(偏移),Wi:weight(权重)
Xi:各个属性,比如宝可梦的身高,宝可梦的体重,宝可梦进化前的战斗力
bias
英 ['baɪəs] 美 ['baɪəs]
n. 偏见;偏爱;斜纹;乖离率
vt. 使存偏见
adj. 偏斜的
adv. 偏斜地
n. (Bias)人名;(法、德、葡、喀)比亚斯;(英)拜厄斯
8、机器学习的第二步是衡量第一步Regression中的function好不好、有多好,那么如何衡量?
用loss function:相对于就是求 函数结果和实际结构的方差
9、机器学习的第二步中的Goodness of Function中的Loss functon(简称L)是什么?
评判函数好坏:Loss function是用来评判函数集中函数的好坏的
input:a function;output:how bad it is(这个function的好坏)
举例:可以是求 实际结果与函数结果的方差 来判断函数的好坏
L(f)是可以看做L(w,b)的:因为不同的函数其实就是不同的w和b在变化
10、判断函数集中函数好坏的时候,可以用穷举法来判断么?
一般是不行的:我们需要更有效率的方法:因为Xi可能有很多个,而且w和b的变化范围也几乎是无限的
11、在求函数集中最好的函数的时候用了Gradient Descent(梯度下降法)方法,那么Gradient Descent方法是什么,【原理】又是什么,注意点是什么?
最简单实例分析 + 画图:最简单实例分析,假设只有一个因变量w,那么L(w)可以画出来(纵轴L(w),横轴w)
判断w是加还是减:随机找一个初始的位置,找这个点切线的斜率(微分),如果切线斜率是负数,那么久增加w,反之正数
learning rate:增加w的幅度为η*斜率,那么这个η就是learning rate,η越大,相当于每次跨一大步,学习的越快,不过也没那么精确
不同起始点不一定可以找到global minimal:因为有些点出发,会走到local minima,这个时候斜率为0,w就走不动了,没法判断是向左还是向右
gradient
英 ['greɪdɪənt] 美 ['ɡredɪənt]
n. [数][物] 梯度;坡度;倾斜度
adj. 倾斜的;步行的
descent
英 [dɪ'sent] 美 [dɪ'sɛnt]
n. 下降;血统;袭击
vt. 除去…的气味;使…失去香味
12、在求函数集中最好的函数的时候用了Gradient Descent(梯度下降法)方法,如果变化的参数是两个,那么计算步骤是怎样?
1、选初始值:(Randomly)Pick an initial value w0,b0
2、计算斜率:计算L对w和b的偏微分,这就相当于一个参数时候的斜率,这里是往等高线的法线方向走
13、在求函数集中最好的函数的时候用了Gradient Descent(梯度下降法)方法中,是否斜率(微分)是0的点就是所求?
不是:一条线中可以有很多斜率为0的点,但是他们不一定是极值点
14、在求最好函数的过程中,我们发现最好一次函数的误差测试出来不满意,我们应该怎么做?
增加模型次数,或者分类讨论:可以换二次,三次等的模型,找到最适合的
15、机器学习在求最好函数的过程中,overfitting是什么?
函数模型太复杂了
增加函数次数,training data的误差变小,但是Test data的误差变大:虽然当我们增加函数次数时,可以使training data的Average Error越来越小,但是Test data的表现缺不尽如人意,甚至在五次方程时,大大超出了我们的预估。那么这种现象就叫做’overfitting。
16、机器学习选模型的时候,是选training data的误差最小的,还是选Test data的误差最小的?
选Test data的误差最小的:肯定是选Test data的误差最小的
17、机器学习选模型的时候,函数的次数越高越好么?
最合适的才是最好的:方程不是次数越复杂越好,所以我们要选择一个最合适的:选Test data的误差最小的
18、怎么解决overfitting的问题?
收集更多数据:用来测试:collect more data
19、在机器学习测试最好函数的过程中,我们发现同一个x对应多个y,可能的原因是什么?
遗漏因素:我们少考虑了因素,比如宝可梦的种族
分类讨论:或者可以分类讨论,不同的种族的宝可梦对应不同的 线性模型 ,这里分类讨论比增加函数次数得到的test data的误差更小(也不一定,或者有其它更好的模型)
20、在机器学习测试最好函数的过程中,如何对Loss Function来 Regularization(为什么要对Loss Function来Regularization)?
平滑化:Regularization就是Loss function 平滑化
正确函数一般是平滑的:因为一般平滑smoother的曲线才是我们需要的,那些抖动特别大的一看起来就不对
regularization
[,rɛɡjʊlərɪ'zeʃən]
n. 规则化;调整;合法化
21、为什么在对Loss Function 来 Regularization(使平滑化) 的过程中,增加的参数没有bias(偏移)?
一般没有帮助:因为线性函数的bias对函数平滑没有帮助
二、内容在总结中
李宏毅机器学习课程---2、Regression - Case Study的更多相关文章
- 李宏毅机器学习课程---4、Gradient Descent (如何优化 )
李宏毅机器学习课程---4.Gradient Descent (如何优化) 一.总结 一句话总结: 调整learning rates:Tuning your learning rates 随机Grad ...
- 李宏毅机器学习课程---3、Where does the error come from
李宏毅机器学习课程---3.Where does the error come from 一.总结 一句话总结:机器学习的模型中error的来源是什么 bias:比如打靶,你的瞄准点离准心的偏移 va ...
- 李宏毅机器学习课程笔记-2.5线性回归Python实战
本文为作者学习李宏毅机器学习课程时参照样例完成homework1的记录. 任务描述(Task Description) 现在有某地空气质量的观测数据,请使用线性回归拟合数据,预测PM2.5. 数据集描 ...
- 李宏毅老师机器学习课程笔记_ML Lecture 1: ML Lecture 1: Regression - Demo
引言: 最近开始学习"机器学习",早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程.今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子 ...
- 李宏毅机器学习笔记3:Classification、Logistic Regression
李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对 ...
- 李宏毅机器学习笔记1:Regression、Error
李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对 ...
- 李宏毅老师机器学习课程笔记_ML Lecture 0-1: Introduction of Machine Learning
引言: 最近开始学习"机器学习",早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程.今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子 ...
- 课程三(Structuring Machine Learning Projects),第一周(ML strategy(1)) —— 1.Machine learning Flight simulator:Bird recognition in the city of Peacetopia (case study)
[]To help you practice strategies for machine learning, the following exercise will present an in-de ...
- 李宏毅老师机器学习课程笔记_ML Lecture 2: Where does the error come from?
引言: 最近开始学习"机器学习",早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程.今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子 ...
随机推荐
- git——修改已经提交并push后的commit注释
把代码push到远程后,发现commit的注释居然多了几个错别字,不行,必须改了! 搜索了一些答案之后自己做了一个总结如下: ①修改倒数第次的commit 指令:$ git rebase -i HEA ...
- 前端agl分页的写法
<!-- 分页组件开始 --> <script src="../plugins/angularjs/pagination.js"></script&g ...
- Office应用程序对照表
任何Office应用程序(包括excel)的类型库都作为Office安装的一部分安装.类型库是特定于版本的(即,安装了哪个版本的Office). 例如,Office 2007版本为12.0,Offic ...
- Yii2中一些常用的参数
系统类型: <?= php_uname() ?> 解译引擎: <?= $_SERVER['SERVER_SOFTWARE'] ?>, Zend: <?= Zend_Ver ...
- AcWing 160. 匹配统计 (哈希+二分) 打卡
阿轩在纸上写了两个字符串,分别记为A和B. 利用在数据结构与算法课上学到的知识,他很容易地求出了“字符串A从任意位置开始的后缀子串”与“字符串B”匹配的长度. 不过阿轩是一个勤学好问的同学,他向你提出 ...
- thinkphp 使用redis 整理(二) mark 一下
参考手册 http://www.cnblogs.com/weafer/archive/2011/09/21/2184059.html redis 几种数据类型选择,参考 : https://b ...
- 工具类--MD5Utils
public class MD5Utils { private static final String[] HEX_DIGITS = { "0", "1", & ...
- 浅谈虚拟机、Docker和Hyper技术
操作系统 我们知道: 完整的操作系统=内核+apps 内核负责管理底层硬件资源,包括CPU.内存.磁盘等等,并向上为apps提供系统调用接口,上层apps应用必须通过系统调用方式使用硬件资源,通常并不 ...
- jQuery 加载事件
1. jquery加载事件实现 ① $(document).ready(function处理); ② $().ready(function处理); ③ $(function处理); 对第一种加载的封 ...
- 调试口:JTAG与SW-Debug Port